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Abstract

We investigate the implication problem for classes of data dependencies over
SQL table definitions. Under Zaniolo’s “no information” interpretation of null
markers we establish an axiomatization and algorithms to decide the implication
problem for the combined class of functional and multivalued dependencies in the
presence of NOT NULL constraints. The resulting theory subsumes three previ-
ously orthogonal frameworks. We further show that the implication problem of
this class is equivalent to that in a propositional fragment of Cadoli and Schaerf’s
family of para-consistent S-3 logics. In particular, S is the set of variables that
correspond to attributes declared NOT NULL. We also show how our equivalences
for multivalued dependencies can be extended to Delobel’s class of full first-order
hierarchical decompositions, and the equivalences for functional dependencies can
be extended to arbitrary Boolean dependencies. These dualities allow us to transfer
several findings from the propositional fragments to the corresponding classes of
data dependencies, and vice versa. We show that our results also apply to Codd’s
null interpretation “value unknown at present”, but not to Imielinski’s or-relations
utilizing Levene and Loizou’s weak possible world semantics. Our findings estab-
lish NOT NULL constraints as an effective mechanism to balance not only the
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certainty in database relations but also the expressiveness with the efficiency of
entailment relations. They also control the degree by which the implication of data
dependencies over total relations is soundly approximated in SQL table definitions.

Keywords: Axiomatization, Boolean dependency, Boolean logic, Functional dependency,
Incomplete Information, Implication, Logic of Paradox, Multivalued dependency, S-3
logic, SQL

1 Introduction and Motivation

A database system manages a collection of persistent information in a shared, reliable,
effective and efficient way. Most commercial database systems are still founded on the
relational model of data [1]. Data administrators utilize various classes C of first-order
formulae, called data dependencies, to restrict the relations in the database to those con-
sidered meaningful to the application at hand. A central problem in logic, mathematics
and computer science is the implication problem of such classes C [2]. In terms of data
dependencies the problem is to decide whether for an arbitrarily given set Σ ∪ {φ} of
data dependencies in C, Σ implies φ, i.e. whether every relation that satisfies all the
elements of Σ also satisfies φ. For databases specifically, solutions to the implication
problem are essential for their modeling and design [3, 4], and can advance many data
processing tasks such as updates [5, 6, 7, 8], queries [9], security [10], maintenance [11],
cleaning [12], integration [13] and exchange [14]. According to Delobel and Adiba [15]
the class of functional dependencies (FDs) captures around two-thirds, and the class of
multivalued dependencies (MVDs) around one-quarter of all uni-relational dependencies
(those defined over a single relation schema) that arise in practice. In particular, MVDs
are frequently exhibited in database applications [16], e.g. after de-normalization or in
views [3]. The next example illustrates how instances of the implication problem arise
naturally from table definitions in SQL [17], which has been the industry standard for
defining and querying data for several decades.

Example 1 Consider an SQL table definition Supplies with column headers A(rticle),
S(upplier), L(ocation) and C(ost). The table definition collects information about sup-
pliers that deliver articles from a location at a certain cost.

CREATE TABLE Supplies (
Article CHAR[20],
Supplier VARCHAR NOT NULL,
Location VARCHAR NOT NULL,
Cost CHAR[8]);

Suppose the database management system enforces the following constraints: The FD
A → S says that for every article there is at most one supplier, the FD AL → C says
that the cost is determined by the article and the location, and the MVD S � L says
that the locations are determined by the supplier independently of the articles and costs.
Do the following meaningful constraints need to be enforced explicitly, or are they already
enforced implicitly: i) the FD A→ C and ii) the MVD A� L?
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While research on the implication problem for the combined class of FDs and MVDs
has been extensive, currently existing theories only apply to the two extreme cases of SQL
table definitions where all attributes are NOT NULL or all attributes are NULL, respectively.
Note that we adopt SQL terminology here. If an attribute is declared NOT NULL, then it
does not allow occurrences of the null marker, and if an attribute is declared NULL, then
it does allow occurrences of the null marker. One may prefer to say that an attribute
is (not) nullable instead of saying that an attribute is (NOT) NULL, respectively. The
classical theory of FDs and MVDs (e.g. [18, 19, 20, 21]) only applies to total relations,
i.e. where every attribute is NOT NULL. Using Zaniolo’s “no information” null marker
[22], denoted by ni, Lien investigated the combined class of FDs and MVDs over partial
relations where every attribute is assumed to be NULL [23, 24]. Atzeni and Morfuni
studied the class of FDs in the presence of a null-free subschema (NFS) that denotes the
set of attributes declared NOT NULL [25], but they did not consider MVDs. As Example
1 illustrates, SQL table definitions motivate to study the implication problem for classes
C of data dependencies in the presence of an (arbitrary) NFS: given a relation schema R,
a set Σ∪{φ} of elements in C and an NFS Rs over R, decide whether Σ implies φ in the
presence of Rs, i.e. whether every relation over R that satisfies Σ and Rs also satisfies
φ. Indeed, the following example illustrates that the ability to specify arbitrary null-free
subschemata has a significant impact on the implication problem of the combined class
of FDs and MVDs.

Example 2 Let R = ASLC, Rs = SL, Σ = {A → S,AL → C, S � L} as in Example
1. It turns out that Σ implies both the FD A→ C and the MVD A� L in the presence
of Rs. However, if Rs = ASC, then the relation

Article Supplier Location Cost
Kiwi G6Kiwi ni 1.50
Kiwi G6Kiwi ni 2.50

satisfies Σ and Rs, but violates A → C. Indeed, a relation satisfies an FD X → Y if
every pair of its tuples that has matching non-null values on every attribute in X has also
matching values on every attribute in Y . In particular, the relation satisfies AL → C
since there are no tuples with non-null values on L. Moreover, a relation satisfies an
MVD X → Y if for every pair of its tuples that has matching non-null values on every
attribute in X there is some tuple in the relation that agrees with one of the two tuples
on every attribute in XY and agrees with the other tuple on every attribute in R−XY .
For Rs = ALC the relation

Article Supplier Location Cost
Kiwi ni Maunganui 1.50
Kiwi ni Taranaki 2.50

satisfies Σ and Rs, but violates A→ C and A� L.
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In summary, currently existing solutions to the implication problem do not apply
to important classes of data dependencies or cover only extreme cases of SQL table
definitions that do not do justice to the power of SQL’s NOT NULL constraint.

Organization. A summary of related work in Section 2 provides further motivation
for our study. The contributions of this article are discussed in Section 3. We give
the basic definitions required for our treatment of data dependencies over incomplete
relations in Section 4. In Section 5 we establish an axiomatization of FDs and MVDs
in the presence of an arbitrary NFS, and develop an almost linear time algorithm to
decide the corresponding implication problem. In Section 6 we establish the equivalences
between the implication of FDs and MVDs in the presence of an NFS and the implication
of a propositional fragment in Boolean and S-3 logics. In Section 7 we analyze whether
our results also apply to other approaches towards handling incomplete information,
including Levene and Loizou’s weak possible world semantics of data dependencies for
Codd’s null marker interpretation “value unknown at present” and for Imielinksi’s or-
relations. In Section 8 we discuss three data processing applications of our results. We
conclude in Section 9 and discuss some possible directions of future work in Section 10.

2 Related Work

Data dependencies have been studied thoroughly in the relational model of data, cf. [3,
26, 27]. Applications comprise almost the full range of database topics including normal-
ization [28, 20, 6, 7, 8], requirements engineering and schema validation [29], data mining
[30], database security [31], view maintenance [11] and query optimization [32]. They
have received considerable attention in other data models [33, 25, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44]. New application areas involve data cleaning [12], data transformations
[45], consistent query answering [46], data exchange [47, 48] and data integration [13].

FDs capture around two-thirds and MVDs around one-quarter of all uni-relational
dependencies that arise in applications [15, 16]. Join, embedded, equality- and tuple-
generating dependencies are more expressive, but are beyond our scope here [49, 50, 51,
52]. Join dependencies are not Hilbert-style axiomatizable [53], acyclic join dependen-
cies are captured by sets of MVDs [54], and the correspondences to propositional logic
fragments do not extend beyond FDs and MVDs [21]. The use of other equality- and
tuple-generating dependencies [26] have their major motivation in data exchange [14].

For total relations, Armstrong [55] established the first axiomatization for FDs. Beeri,
Fagin, and Howard extended this axiomatization to the combined class of FDs and MVDs
[19]. In general, an axiomatization can be applied to enumerate all implicit knowledge
from the knowledge given explicitly. In databases specifically, axiomatizations equip ad-
ministrators and designers with means to validate the correct specification of explicit
knowledge, to design and fine-tune databases or to optimize queries. In fact, an axiom-
atization ensures that all opportunities of utilizing implicit knowledge can be exploited
effectively. Moreover, an analysis of the completeness argument can usually provide in-
valuable hints for finding algorithms that efficiently decide the implication problem. For
FDs over total relations, implication can be decided in time linear in the input [56, 57],
for MVDs the best known algorithm runs in almost linear time [18, 58, 59, 60, 61, 62, 63].
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Such decision algorithms complement the enumeration algorithm by a further reasoning
capability that can make efficient, but only partial decisions about implicit knowledge
since the input requires a candidate for an implied dependency. Equivalences between
the implication of FDs and the implication of Horn clauses in Boolean propositional logic
were established by Fagin [64]. These equivalences were extended to the combined class of
FDs and MVDs, and its corresponding fragment of Boolean propositional logic by Sagiv,
Delobel, Parker and Fagin [21]. This also resulted in the introduction of Boolean depen-
dencies whose implication problem is equivalent to that of Boolean propositional logic
[21]. Since the implication problem of Boolean propositional formulae is coNP-complete
to decide, the fragment that corresponds to FDs and MVDs is of great practical signifi-
cance [59, 63].

One of the most important extensions of Codd’s basic relational model [1] is incom-
plete information. This is mainly due to the high demand for the correct handling of such
information in real-world applications. Approaches to deal with incomplete information
comprise incomplete relations [65, 66, 67], or-relations [68, 69, 70, 71], fuzzy relations [72]
and rough sets [73]. In the literature many kinds of null markers have been proposed;
for example, “missing” or “value unknown at present” [65, 74, 75], “non-existence” [76],
“inapplicable” [75], “no information” [22] and “open” [77]. In particular, Zaniolo’s “no
information” interpretation allows users of the database to model both non-existent and
unknown information in a simple way. Lien [23] axiomatized FDs and MVDs in partial
relations under this interpretation, but assumed that all attributes are NULL. Atzeni and
Morfuni established axiomatizations and linear time algorithms for deciding the impli-
cation of FDs combined with existence constraints including null-free subschemata [25].
Using Codd’s interpretation “value unknown at present”, Levene and Loizou introduced
and axiomatized the combined class of weak and strong FDs with respect to a possible
world semantics [41]. The axiomatization of strong FDs is given by the Armstrong ax-
ioms, while weak FDs have the same axiomatization as the FDs of Lien [23], Atzeni and
Morfuni [25]. Here, we establish a unifying framework for the implication problem of
FDs and MVDs as motivated by the use of a single null marker and an arbitrary null-free
subschema in SQL table definitions.

In previous work [78] the majority of the results in the present article were announced
in a ten page long paper. The present article is a result of comprehensive revisions and
extensions. In particular, it contains the proofs of all results and a detailed treatment
of the subject that allow the reader to gain deep insight into the findings. Particular
emphasis has been placed on examples that illustrate the concepts developed and the
characterizations established. The motivation for studying the implication problem is
extensive, a detailed analysis and comparison to previous work is included, and the
impact of the results and techniques on other popular approaches to null markers in the
literature are explained. Finally, several areas are indicated to which the results can be
applied.
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Figure 1: Summary of previous work and new contributions

3 Contributions

In this article we study the implication problem of important classes of data dependen-
cies in the presence of an arbitrary null-free subschema. This will address a gap between
database theory and practice. Our study will identify SQL’s NOT NULL constraint as an
effective mechanism to not only control the degree of certainty in database relations but
also the expressiveness with the efficiency of entailment relations. That is, the more at-
tributes are declared NOT NULL the more data dependencies will be implied (and the more
semantic knowledge is expressed) and the less efficient it becomes to decide implication.
In particular, NOT NULL constraints can regulate the degree by which the implication of
data dependencies over total relations is soundly approximated in SQL table definitions.
Figure 1 contains a summary of previous work and our new contributions. We will now
summarize the contributions of the article in detail.

3.1 A unifying theory

As a first contribution of this article we establish a finite axiomatization D for the com-
bined class of FDs and MVDs in the presence of an arbitrary NFS. In order to unify
the currently existing, but orthogonal theories of FDs and MVDs [25, 19, 23] we first
adapt Zaniolo’s “no information” interpretation of null markers [22]. Our completeness
argument is new, already in the special case of total relations, since we utilize a two-tuple
relation. Hence, we obtain the equivalence of the implication problem to the one in the
world of two-tuple relations. For the special case where the given NFS is empty, our
completeness proof answers the open question whether the axiomatization established
for MVDs is also complete for non-standard MVDs [23], i.e. where the attribute set on
the left-hand side is empty.
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As a further contribution we show that Galil and Sagiv’s almost linear time algorithms
for computing the dependency basis and deciding the associated implication problem,
specifically developed for the case of total relations [59, 63], also apply to the presence of
an arbitrary NFS. Our axiomatization D shows that for any given relation schema R and
any given set Σ ∪ {φ} of FDs and MVDs and any given NFS Rs over R, the problem of
deciding whether Σ implies φ in the presence of Rs is equivalent to the problem of deciding
whether Σ[XRs] implies φ over total R-relations. Herein, X denotes the set of attributes
on the left-hand side of φ and Σ[XRs] denotes those elements of Σ whose left-hand side is a
subset ofXRs. This allows us to establish anO(|Σ|+min{kΣ[XRs], log pΣ[XRs]}×|Σ[XRs]|)
time algorithm to compute the dependency basis DepBΣ,Rs(X), and an

O(|Σ|+min{kΣ[XRs], log p̄Σ[XRs]} × |Σ[XRs]|)

time algorithm for deciding whether the dependency φ with left-hand side attribute set
X is implied by Σ in the presence of the NFS Rs. Herein, kΣ denotes the number of
MVDs in Σ, pΣ denotes the number of sets in the dependency basis DepBΣ,Rs(X) of X
with respect to Σ and Rs, and p̄Σ denotes the number of sets in DepBΣ,Rs(X) that have
non-empty intersection with the right-hand side of φ. Note that Galil’s algorithms run
in linear time when Σ contains only FDs but no MVDs. The upper bounds illustrate the
impact of the NFS Rs on the time-complexity of computing the dependency basis and
deciding the implication problem.

3.2 Equivalences to propositional fragments of Boolean and
para-consistent logics

As a second major contribution of this article we establish equivalences between the
implication problem of the combined class of FDs and MVDs in the presence of an NFS
Rs and the implication problem of a propositional fragment F in Cadoli and Schaerf’s
family of para-consistent S-3 logics [79]. Herein, S is the set of propositional variables
that corresponds to the NFS Rs. We first exemplify how the equivalences to Boolean
implication in F , established by Sagiv, Delobel, Parker and Fagin for the special case of
total relations [21], apply indirectly also to an arbitrary NFS.

Example 3 Let R = ASLC, Rs = ALC, Σ = {A → S,AL → C, S � L}, φ1 = A � L
and φ2 = A → C. The problems whether Σ implies φ1 and φ2 in the presence of Rs are
equivalent to the problems whether Σ[ALC] = {A→ S,AL→ C} implies φ1 and φ2 over
total R-relations, respectively. The two-tuple relation r

Article Supplier Location Cost
Kiwi G6Kiwi Gisborne 1.50
Kiwi G6Kiwi Wellington 2.50

shows that Σ[ALC] implies neither φ1 nor φ2 over total relations. Let A′, S ′, L′ and C ′

denote the propositional variables that correspond to the attributes of Supplies, respec-
tively. Let ωr denote the special truth assignment that assigns true, denoted by T, to a
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variable V ′ if and only if the two tuples of r agree on the corresponding attribute V . We
can see that ωr is a Boolean model of the Horn clauses ¬A′ ∨ S ′ and ¬A′ ∨ ¬L′ ∨ C ′

that result from the FDs in Σ[ALC], but not a Boolean model of neither the formula
¬A′ ∨ L′ ∨ (S ′ ∧ C ′) that results from the MVD φ1 nor the Horn clause ¬A′ ∨ C ′ that
results from the FD φ2. In particular, an MVD X � Y over R results in the Boolean for-
mula ∨A∈X(¬A′)∨ (∧B∈Y−XB

′)∨ (∧C∈R−XYC
′) [21]. This example illustrates the strong

correspondence between counter-example relations for the implication of FDs and MVDs
over total relations and counter-example truth assignments for the Boolean implication
of the propositional fragment F [21].

The equivalence to Boolean implication in the fragment F is indirect since the input
(Σ, φ, Rs) to the implication problem in the presence of an NFS is first converted into
the instance (Σ[XRs], φ) of the implication problem over total relations. The following
example illustrates a direct characterization of FD and MVD implication in the presence
of an NFS Rs in terms of S-3 implication for the propositional fragment F . Consequently,
we gain the additional insight that the NFS Rs corresponds to the set S of propositional
variables that must be interpreted classically, i.e. for all V ′ ∈ S we have that either V ′

or ¬V ′ is true, and not both.

Example 4 Let R = ASLC, Rs = ALC, Σ = {A → S,AL → C, S � L}, φ1 = A � L
and φ2 = A→ C as in Example 3. The relation

Article Supplier Location Cost
Kiwi ni Gisborne 1.50
Kiwi ni Wellington 2.50

is a two-tuple counter-example for the implication of the MVD φ1 and the FD φ2 by Σ in
the presence of Rs. For partial two-tuple relations we define the special S-3 interpretation
that assigns T to V ′ and false, denoted by F, to ¬V ′ if the two tuples agree on V and
are different from ni, assigns T to V ′ and ¬V ′ if the two tuples are both equal to ni

on V , and assigns F to V ′ and T to ¬V ′ if the two tuples disagree on V . Specifically
for this example, this S-3 interpretation is a model of the Horn formulae ¬A′ ∨ S ′ and
¬A′∨¬L′∨C ′ and the formula ¬S ′∨L′∨(A′∧C ′), but not a model of neither the formula
¬A′ ∨ L′ ∨ (S ′ ∧ C ′) nor the Horn formula ¬A′ ∨ C ′. Note that the variable S ′ does not
belong to the set S, i.e. the assignment of T to both S ′ and ¬S ′ conforms to the notion
of an S-3 interpretation.

The special case where S corresponds to the entire relation schema R covers Sagiv,
Delobel, Parker and Fagin’s equivalence between the implication of FDs and MVDs and
the BL implication of the fragment F in Boolean logic BL [64, 21]. For the special
case where S = ∅ the implication of Lien’s class of FDs and MVDs corresponds to
LP implication of F in Graham Priest’s well-known Logic of Paradox LP [80]. The
implication of Atzeni and Morfuni’s class of FDs in the presence of an NFS Rs [25]
corresponds to S-3 implication of propositional Horn clauses.

When proving the equivalence to S-3 implication we do not simply extend the proof
arguments applied to the special case of total relations [21]. In this special case, Sagiv,
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Delobel, Parker and Fagin showed the strong result that every relation that satisfies
a given set Σ of FDs and MVDs and violates a given FD or MVD φ has a two-tuple
subrelation that satisfies Σ and violates φ. While we show that the result holds in the
context of “no information” nulls, we demonstrate that it is not required to establish
the equivalence, even in the special case of total relations. Instead, we simply utilize the
two-tuple relation from the completeness proof for the axiomatization D.

3.3 Further impact and applications

As the third contribution we show that our results carry over to Codd’s null marker unk
(value unknown at present) but not to Imielinski’s or-relations under Levene and Loizou’s
weak possible world semantics [41]. We also illustrate three major areas to which our
reasoning abilities can be applied: updates, queries and access control.

3.4 Further equivalences

As the final major contribution of this article we illustrate the wide applicability of our
proof techniques to establish equivalences for further classes of data dependencies. These
are reported in the electronic appendix. From the case of total relations it is known that
the equivalences to BL implication do not extend to more general classes of dependencies
such as join or embedded dependencies [21]. Delobel introduced the class of full first-order
hierarchical decompositions (FOHDs) [81] as an important subclass of join dependencies.
As a generalization of the class of MVDs, we introduce the class of FOHDs to the context
of the “no information” nulls. We establish an equivalence between the implication
problem of the combined class of FDs and FOHDs in the presence of an NFS and that
of a propositional fragment in both Boolean and S-3 logics. As an application of the
special S-3 interpretations derived from two-tuple relations, cf. Example 4, we introduce
and analyze the class of Boolean dependencies (BDs) in the presence of an NFS. This
class subsumes the class of BDs from total relations [21] and Atzeni and Morfuni’s class
of FDs in the presence of an NFS. In particular, we obtain the equivalence between the
implication problem for BDs in the presence of an NFS Rs and that of propositional
formulae in S-3 logics.

As an application of our new equivalence we obtain directly results on the time-
complexity of the associated implication problem. In fact, detailed findings with respect
to Vardi’s notions of expression, data and combined complexity transfer straight from the
Logic of Paradox [82] to the class of BDs in the absence of an NFS. In the general case
where Rs is arbitrary, we obtain immediately a uniform complexity of O(|Σ|× |φ|×2|Rs|)
time for the implication problem whether a set Σ of BDs in Negation Normal Form im-
plies a BD φ in Conjunctive Normal Form in the presence of Rs [79]. The situation is
illustrated in Figure 2 for the case where R = ABC. Declaring additional attributes as
NOT NULL increases the certainty and consistency of any of the future database relations,
and increases the expressiveness of the entailment relations for the classes of data depen-
dencies studied (in the sense that additional data dependencies are captured implicitly).
On the other hand, this results in a decrease in the efficiency of deciding these entail-
ment relations. Hence, by specifying attributes as NOT NULL the data administrator has
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Figure 2: Sound approximations of implication over total relations by null-free sub-
schemata

a powerful mechanism to approximate soundly the implication of data dependencies over
total relations.

Our equivalences can also be applied in the opposite direction. In fact, our algorithms
for deciding FD and MVD implication in the presence of an arbitrary NFS Rs establish
directly new upper bounds for the time-complexity of deciding S-3 implication in the
fragment F . Moreover, the axiomatization for the implication of FDs and MVDs in the
presence of an NFS applies to S-3 implication of F , too.

As a further application of our techniques we show how reasoning about Boolean
dependencies in the presence of an NFS can be simulated by reasoning about Boolean
dependencies in the absence of an NFS. In this sense, the special case of an empty NFS
is powerful. We also extend the logical characterization of the notion of a dependency
basis and attribute set closure from the special case of total relations [21] to the presence
of an arbitrary NFS.

4 Preliminaries

We summarize the basic notions required for our treatment of data dependencies over
incomplete relations in the following sections.

4.1 Total and partial relations

Let A = {A1, A2, . . .} be a (countably) infinite set of distinct symbols, called attributes
(representing column names of tables). A relation schema is a finite non-empty subset
R of A. Each attribute A of a relation schema R is associated with an infinite domain
dom(A) which represents the possible values that can occur in column A. Note that the
validity of our results only depends on having at least two element values in each domain.
This is a consequence of our proof techniques. In order to encompass incomplete informa-
tion the domain of each attribute contains the null marker, denoted by ni ∈ dom(A). The
intention of ni is to mean “no information”. This is the most primitive interpretation,
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and it can model non-existing as well as unknown information [25, 22]. We stress that
the null marker is not a domain value. In fact, it is a purely syntactic convenience that
we include the null marker in the domain of each attribute as a distinguished element.

For attribute sets X and Y we may write XY for their set union X ∪ Y . If X =
{A1, . . . , Am}, then we may write A1 · · ·Am for X. In particular, we may write simply
A to represent the singleton {A}. A tuple over R (R-tuple or simply tuple, if R is
understood) is a function t : R →

∪
A∈R

dom(A) with t(A) ∈ dom(A) for all A ∈ R. The

null marker occurrence t(A) = ni associated with an attribute A in a tuple t means that
“no information” is available about the value t(A) of t on attribute A. For X ⊆ R let
t[X] denote the restriction of the tuple t over R to X. A (partial) relation r over R is a
finite set of tuples over R. Let t1 and t2 be two tuples over R. It is said that t1 subsumes
t2 if for every attribute A ∈ R, t1(A) = t2(A) or t2(A) = ni holds. In consistency
with previous work [25, 23, 22], the following restriction will be imposed, unless stated
otherwise: No relation shall contain two tuples t1 and t2 such that t1 subsumes t2. With
no null markers present this means that no duplicate tuples occur. The validity of our
results is independent of this restriction. The restriction is necessary for partial relations
to have a lossless decomposition, if (and only if) they exhibit an FD (MVD).

For a tuple t over R and a set X ⊆ R, t is said to be X-total, if for all A ∈ X,
t[A] ̸= ni. Similar, a relation r over R is said to be X-total, if every tuple t of r is
X-total. A relation r over R is said to be a total relation, if it is R-total.

We recall the definition of projection and join operations on partial relations [25, 23].
Let r be some relation over R. Let X be some subset of R. The projection r[X] of r on
X is the set of tuples t for which (i) there is some t1 ∈ r such that t = t1[X] and (ii) there
is no t2 ∈ r such that t2[X] subsumes t and t2[X] ̸= t. For Y ⊆ X, the Y -total projection
rY [X] of r on X is rY [X] = {t ∈ r[X] | t is Y -total}. Given an X-total relation r over
R and an X-total relation s over S such that X = R∩ S the natural join r ◃▹ s of r and
s is the relation over R∪S which contains those tuples t such that there are some t1 ∈ r
and t2 ∈ s with t1 = t[R] and t2 = t[S] [25, 23].

4.2 FDs, MVDs and Null-Free Subschemata

Functional dependencies are important for the relational [56, 83, 1] and other data models
[84, 36, 40, 41, 42, 43, 85, 86, 44]. According to Lien [23], a functional dependency with
nulls (FD) over R is a statement X → Y where X, Y ⊆ R. The FD X → Y over R is
satisfied by a relation r over R, denoted by |=r X → Y , if and only if for all t1, t2 ∈ r the
following holds: if t1 and t2 are X-total and t1[X] = t2[X], then t1[Y ] = t2[Y ]. Recall that
ni ∈ dom(A) for every attribute A. For total relations the FD definition reduces to the
standard definition of a functional dependency [3, 27], and so is a sound generalization.
It is also consistent with the “no information” interpretation [25, 23]. In fact, tuples with
nulls in attributes in X cannot cause a violation of the FD X → Y : the nulls mean that
“no information” is available about those attributes. Two X-total tuples t1, t2 where
t1[X] = t2[X] and t2 is A-total while t1 is not, violate any FD X → Y with A ∈ Y : t1
indicates that “no information” is available about the value for A associated with t1[X],
while t2 indicates that the value for A associated with t2[X] = t1[X] does exist. Hence,

11



it violates the natural requirement of an FD that if the values for X are the same for
two tuples, both tuples must contain the same information for the attributes in Y [25].
Note that if r satisfies the FD X → Y over R, then rX [R] = rX [XY ] ◃▹ rX [X(R− Y )].

According to Lien [23], a multivalued dependency with nulls (MVD) over R is a state-
ment X � Y where X, Y ⊆ R. The MVD X � Y over R is satisfied by a relation r
over R, denoted by |=r X � Y , if and only if for all t1, t2 ∈ r the following holds: if t1
and t2 are X-total and t1[X] = t2[X], then there is some t ∈ r such that t[XY ] = t1[XY ]
and t[X(R− Y )] = t2[X(R− Y )]. Informally, the relation r satisfies X � Y when every
X-total value determines the set of values on Y independently of the set of values on
R−Y . This definition of an MVD is a sound generalization of the standard definition of
a multivalued dependency over total relations [20, 27]. In particular, it has been shown
that MVDs provide a necessary and sufficient condition for the X-total subrelation of a
relation to be decomposable into two of its projections without loss of information (in
the sense that the X-total subrelation is the natural join of the two projections) [23].
That is, |=r X � Y if and only if rX [R] = rX [XY ] ◃▹ rX [X(R− Y )] [23].

Following Atzeni and Morfuni [25], a null-free subschema (NFS) over the relation
schema R is a an expression Rs where Rs ⊆ R. The NFS Rs over R is satisfied by
a relation r over R, denoted by |=r Rs, if and only if r is Rs-total. SQL allows the
specification of attributes as NOT NULL, cf. Example 1. NFSs occur in everyday database
practice: the set of attributes declared NOT NULL forms the single NFS over the underlying
relation schema.

For a set Σ of constraints over some relation schema R we say that a relation r over
R satisfies Σ, denoted by |=r Σ, if r satisfies every σ ∈ Σ. If for some σ ∈ Σ the relation
r does not satisfy σ we say that r violates σ (and violates Σ) and write ̸|=r σ (̸|=r Σ).
We will consider classes C of constraints over a single relation schema, e.g. the combined
class of FDs and MVDs in the presence of an NFS.

4.3 Implication and inference

In schema design data dependencies are normally specified as semantic constraints over
the relations intended to be instances of the schema. During the design process or the
lifetime of a database one usually needs to determine further dependencies which are
implied by the given ones. Let R be a relation schema, let Rs ⊆ R denote an NFS over
R, and let Σ ∪ {φ} be a set of data dependencies over R in the class C. We say that Σ

(finitely) implies φ in the presence of Rs, denoted by Σ |=(f)
Rs
φ, if every (finite) relation

r over R that satisfies Σ and Rs also satisfies φ. For the classes C of dependencies we
consider here we have Σ |=f

Rs
φ if and only if Σ |=Rs φ. For this reason, we will not

distinguish between implication and finite implication. Instead of proving this result
here, we will show an even stronger result in the next section, cf. Corollary 1. If Σ does
not imply φ in the presence of Rs we may also write Σ ̸|=Rs φ.

The implication problem for C in the presence of a null-free subschema is to decide,
given any relation schemaR, any NFSRs overR, and any set Σ∪{φ} of data dependencies
in C over R, whether Σ |=Rs φ. For the classes C of dependencies we consider here, the
sets Σ ∪ {φ} over a relation schema R are always finite. Moreover, if Rs = ∅ we also
write Σ |= φ instead of Σ |=∅ φ. This covers the case where every attribute is NULL. The
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case where every attribute is NOT NULL is covered when Rs = R.
We say that Σ implies φ in the world of two-tuple relations in the presence of an NFS

Rs, denoted by Σ |=2,Rs φ, if every two-tuple relation r over R that satisfies Σ and the
NFS Rs also satisfies φ. The two-tuple implication problem for C in the presence of a
null-free subschema is to decide, given any relation schema R, any NFS Rs over R and
any set Σ ∪ {φ} of dependencies in C over R, whether Σ |=2,Rs φ holds. Again, we may
simply write Σ |=2 φ, if Rs = ∅.

For a set Σ of data dependencies in C and an NFS Rs over a relation schema R, let
Σ∗

Rs
= {φ ∈ C | Σ |=Rs φ} be its semantic closure. In order to determine the semantic

closure, one can utilize a syntactic approach by applying inference rules, e.g. those in
Table 1. These inference rules have the form

premise

conclusion
condition,

and inference rules without a premise are called axioms. An inference rule is called sound
for the implication of dependencies in the presence of an NFS, if for all relation schemata
R, for all NFSs Rs and for all sets Σ of dependencies over R that form the premise and
satisfy the condition of the rule, Σ implies the dependency in the conclusion of the rule
in the presence of Rs. For a finite set Σ ∪ {φ} of dependencies and a set R of inference
rules let Σ ⊢R φ denote the inference of φ from Σ by R. That is, there is some sequence
γ = [σ1, . . . , σn] of dependencies such that σn = φ and every σi is an element of Σ or is
the conclusion that results from an application of an inference rule in R to some premises
in {σ1, . . . , σi−1}. For a finite set Σ of dependencies in C, let Σ+

R = {φ | Σ ⊢R φ} be
its syntactic closure under inferences by R. A set R of inference rules is said to be
sound (complete) for the implication of dependencies in C in the presence of an NFS if
for every relation schema R, for every NFS Rs over R and for every set Σ of dependencies
in C over R we have Σ+

R ⊆ Σ∗
Rs

(Σ∗
Rs

⊆ Σ+
R). The (finite) set R is said to be a (finite)

axiomatization for the implication of dependencies in C in the presence of an NFS if R
is both sound and complete for the implication of dependencies in C in the presence of
an NFS.

5 Dedicated tools for reasoning

In this section we establish the setD from Table 1 as the first finite axiomatization for the
implication of FDs and MVDs in the presence of an NFS. This subsumes Beeri, Fagin, and
Howard’s axiomatization over total relations [19], Atzeni and Morfuni’s axiomatization
of FDs in the presence of an NFS [25], and Lien’s axiomatization of FDs and MVDs
in the absence of an NFS [23]. Using the axiomatization D we show how an arbitrary
instance of the implication problem for FDs and MVDs in the presence of an NFS can be
reduced to an instance of the implication problem for FDs and MVDs over total relations.
This allows us to decide the associated implication problem in the presence of an NFS
in almost linear time. Our bounds show the impact of the null-free subschema Rs on
the time complexity of deciding the implication problem and computing the dependency
basis.
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Table 1: Axiomatization D for FDs and MVDs in the presence of an NFS Rs

XY → Y

X → Y Z

X → Y
(reflexivity, RF) (decomposition, DF)

X → Y X → Z

X → Y Z
(FD union, UF)

X � Y

X � R− Y

X � Y X � Z

X � Y Z
(R-complementation, CR

M) (MVD union, UM)

X � W Y � Z

X � Z −W
Y ⊆ X(W ∩Rs)

(null pseudo-transitivity, TM)

X → Y

X � Y

X � W Y → Z

X → Z −W
Y ⊆ X(W ∩Rs)

(implication, IFM) (null mixed pseudo-transitivity, TFM)

5.1 Soundness

We show first that the setD is sound for the implication of FDs and MVDs in the presence
of an NFS. This follows from the soundness of the FD inference rules of reflexivity RF,
decomposition DF, and FD union UF, cf. [25, 23], R-complementation CR

M, MVD union
UM and implication IFM, cf. [23], and the null pseudo-transitivity rule TM and the null
mixed pseudo-transitivity rule TFM for the implication of FDs and MVDs in the presence
of an NFS, which is shown in the following lemma.

Lemma 1 The null pseudo-transitivity rule TM and the null mixed pseudo-transitivity
rule TFM are both sound for the implication of FDs and MVDs in the presence of an NFS.

Proof We show the soundness of the null pseudo-transitivity rule TM first. Suppose
that r satisfies the MVDs X � W and Y � Z, and the NFS Rs. Furthermore, let
Y ⊆ X(W ∩Rs). Let t1, t2 ∈ r be X-total and such that t1[X] = t2[X]. Since |=r X � W
there is some t′ ∈ r such that t′[XW ] = t2[XW ] and t′[X(R −W )] = t1[X(R −W )].
Since Y ⊆ X(W ∩ Rs) = XW ∩ XRs it follows that t′[Y ] = t2[Y ] and that t′ and
t2 are Y -total. Since |=r Y � Z there is some t ∈ r such that t[Y Z] = t′[Y Z] and
t[Y (R − Z)] = t2[Y (R − Z)]. It is easy to see that t[X(Z −W )] = t1[X(Z −W )] and
t[XW (R− Z)] = t2[XW (R− Z)] hold. That is, r satisfies X � Z −W .

Next we show the soundness of the null mixed pseudo-transitivity rule TFM. Suppose
that r satisfies the MVD X � W , the FD Y → Z, and NFS Rs. Furthermore, let
Y ⊆ X(W ∩ Rs). Let t1, t2 ∈ r be X-total and such that t1[X] = t2[X]. We need
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to show that t1[Z −W ] = t2[Z −W ]. Since |=r X � W there is some t ∈ r such that
t[XW ] = t1[XW ] and t[X(R−W )] = t2[X(R−W )]. Since Y ⊆ X(W∩Rs) = XW∩XRs

it follows that t[Y ] = t1[Y ] and that t and t1 are Y -total. Since |=r Y → Z it follows
that t[Z] = t1[Z]. Let A ∈ X(Z − W ). Then t1(A) = t(A) = t2(A). In particular,
t1[Z −W ] = t2[Z −W ]. That is, r satisfies X → Z −W .

Remark 1 Neither of the following rules:

X �W Y � Z

X � Z − Y
Y ⊆ X(W ∩Rs)

X �W Y → Z

X → Z − Y
Y ⊆ X(W ∩Rs).

is sound. For an illustration that the second rule is not sound let R = ABCDE and
Rs = ABCE, and let Σ consist of the MVD A � BC and the FD AB → CD. For
b ̸= b′ and c ̸= c′ the following relation

A B C D E
a b c ni e
a b′ c′ ni e

satisfies Σ and Rs but violates A→ CD.

Remark 2 A fundamental rule of inference is Atzeni and Morfuni’s null transitivity
rule [25]

X → Y Y → Z

X → Z
Y ⊆ XRs.

The inference

X → Y
IFM : X � Y Y → Z X → Z

TFM : X � Z − Y
Y⊆XRs DF : X → Y ∩ Z

UF : X → Z

shows how the null transitivity rule can be inferred from D.

5.2 Completeness

For a relation schema R, an NFS Rs, a set Σ of FDs and MVDs, and an attribute subset
X over R let DepΣ,Rs(X) := {Y | Σ ⊢D X � Y } denote the set of all attribute subsets
Y such that X � Y can be inferred from Σ by D. The soundness of the union and
R-complementation rules imply that

(DepΣ,Rs(X),⊆,∪,∩, (·)C, ∅, R)

forms a finite Boolean algebra where (·)C maps an attribute set Y to its complement
R − Y . Recall that an element a ∈ P of a poset (P,⊑, 0) with least element 0 is called
an atom of (P,⊑, 0) precisely when a ̸= 0 and every element b ∈ P with b ⊑ a satisfies
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b = 0 or b = a. Further, (P,⊑, 0) is said to be atomic if for every element b ∈ P − {0}
there is an atom a ∈ P with a ⊑ b. In particular, every finite Boolean algebra is atomic.
Let DepBΣ,Rs(X) denote the set of all atoms of (DepΣ,Rs(X),⊆, ∅). Following Beeri [87]
we call DepBΣ,Rs(X) the dependency basis of X with respect to Σ and Rs.

Moreover, let X+
Σ,Rs

= {A | Σ ⊢D X → A} denote the closure of X with respect to Σ
and Rs [56]. The significance of these notions is embodied in the following theorem. The
proof shows, in particular, which of the inference rules in D are required to establish this
result.

Theorem 1 Let Σ be a set of FDs and MVDs, and Rs an NFS over the relation schema
R. Then we have:

1. Σ ⊢D X � Y if and only if Y =
∪

Y for some Y ⊆ DepBΣ,Rs(X),

2. Σ ⊢D X → Y if and only if Y ⊆ X+
Σ,Rs

, and

3. if Σ ⊢D X → A, then {A} ∈ DepBΣ,Rs(X).

Proof (1) Let Y ∈ DepΣ,Rs(X). Since every element b of a Boolean algebra is the union
over those atoms a with a ⊆ b it follows that Y =

∪
Y for Y = {Z ∈ DepBΣ,Rs(X) |

Z ⊆ Y }.
Vice versa, let Y =

∪
Y for some Y ⊆ DepBΣ,Rs(X). Since X � Z ∈ Σ+

D holds for
every Z ∈ Y successive applications of the MVD union rule UM result in X � Y ∈ Σ+

D.
(2) If X → Y ∈ Σ+

D, then also X → A ∈ Σ+
D for all A ∈ Y by means of the FD

decomposition rule DF. Consequently, Y ⊆ X+
Σ,Rs

. Vice versa, if X → A ∈ Σ+
D for all

A ∈ Y , then X → Y ∈ Σ+
D by means of the FD union rule UF.

(3) If X → A ∈ Σ+
D, then X � A ∈ Σ+

D by means of the implication rule IFM. According
to (1) the set {A} must be an element of DepBΣ,Rs(X).

We will now establish the completeness of D. Note that our proof is not just a mere
extension of the arguments used for the special case where Rs = R [19] or where Rs = ∅
[23]. In particular, note that in contrast to the previous work on these special cases
[19, 23] we only require a two-tuple counter-example relation in our proof. Furthermore,
Lien’s proof of completeness for the special case Rs = ∅ did not apply to non-standard
MVDs ∅ � Y and it was an open question whether the rules were also complete for the
class of all MVDs [23]. It follows from our proof that this is indeed the case.

Theorem 2 D is a finite axiomatization for the implication of FDs and MVDs in the
presence of null-free subschemata.

Proof Let R be some relation schema, Rs some NFS and Σ a set of FDs and MVDs over
R.

Soundness. We need to show that Σ+
D ⊆ Σ∗

Rs
holds. Let φ ∈ Σ+

D. The soundness of
the rules in D has been established in previous work and in Lemma 1. A simple induction
over the inference length of φ from Σ by D shows that φ ∈ Σ∗

Rs
.
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Table 2: The relation rφ in the completeness proof
X(X+

Σ ∩Rs) (X+
Σ −X)−Rs W1 ∩Rs W1 −Rs · · · Wi · · · Wk ∩Rs Wk −Rs

t1 0 · · · 0 ni · · · ni 0 · · · 0 ni · · · ni 0 · · · 0 0 · · · 0 ni · · · ni
t2 0 · · · 0 ni · · · ni 0 · · · 0 ni · · · ni 1 · · · 1 0 · · · 0 ni · · · ni

Completeness. We need to show that Σ∗
Rs

⊆ Σ+
D holds. Suppose first there is some

MVD φ, say X � Y , such that φ /∈ Σ+
D. We will construct a two-tuple relation rφ that

violates X � Y but satisfies Σ and the NFS Rs.
Let DepBΣ,Rs(X) be the disjoint union of {{A} | A ∈ X+

Σ,Rs
} and {W1, . . . ,Wk}, in

particular {X+
Σ,Rs

,W1, . . . ,Wk} forms a partition of R. Since φ /∈ Σ+
D we conclude by

Theorem 1 that the attribute set Y is not the union of some elements of DepBΣ,Rs(X).
Consequently, there is some i ∈ {1, . . . , k} such that Y ∩Wi ̸= ∅ and Wi − Y ̸= ∅ hold.
Let rφ := {t1, t2} be the relation in Table 2. That is, for all A ∈ R we have: t1(A) ̸= t2(A)
if and only if A ∈ Wi. Moreover, for all A ∈ R we have: t1(A) ̸= ni (t2(A) ̸= ni) if and
only if A ∈ XRsWi. Note that rφ satisfies the following property: if Z =

∪
B∈B

B for some

B ⊆ DepBΣ,Rs(X), then t1[Z] = t2[Z] (if Wi /∈ B) or t1[R − Z] = t2[R − Z] (if Wi ∈ B).
Also note that t1[X

+
Σ,Rs

] = t2[X
+
Σ,Rs

].
It follows from the construction that rφ violates φ and rφ satisfies the NFS Rs. In

order to show that φ /∈ Σ∗
Rs

it remains to prove that rφ satisfies Σ.
Let U � V ∈ Σ. Suppose that t1[U ] = t2[U ] and t1, t2 are U -total. Let

W :=
∪

{Wj ∈ DepBΣ,Rs(X) | Wj ∩ U ̸= ∅}.

From t1[U ] = t2[U ] and the construction of rφ we conclude that t1[W ] = t2[W ]. SinceW is
the union of elements from DepBΣ,Rs(X) we conclude by Theorem 1 that X �W ∈ Σ+

D.
Note that X+

Σ,Rs
is also the union of elements from DepBΣ,Rs(X), i.e., X � X+

Σ,Rs
∈ Σ+

D,

and by an application of the MVD union rule UM, X � X+
Σ,Rs

W ∈ Σ+
D, too.

Since t1[U ] = t2[U ] and t1, t2 are U -total, the construction of rφ implies that

U ⊆ X((X+
ΣW ) ∩Rs).

We now apply the null pseudo-transitivity rule TM to X � X+
Σ,Rs

W ∈ Σ+
D, U � V ∈ Σ+

D

and U ⊆ X((X+
Σ,Rs

W )∩Rs) to inferX � V −X+
Σ,Rs

W ∈ Σ+
D. From the definition ofX+

Σ,Rs

it follows that X → X+
Σ,Rs

∈ Σ+
D by applications of the FD union rule UF. From X →

X+
Σ,Rs

∈ Σ+
D we conclude X → ((V −W ) ∩X+

Σ,Rs
) ∈ Σ+

D by means of the decomposition

rule DF, and X � ((V −W )∩X+
Σ,Rs

) ∈ Σ+
D by an application of the implication rule IFM.

Moreover, an application of the MVD union rule UM to X � V − X+
Σ,Rs

W ∈ Σ+
D and

X � ((V −W )∩X+
Σ,Rs

) ∈ Σ+
D results in X � V −W ∈ Σ+

D. Therefore, V −W is the union
of elements from DepBΣ,Rs(X). Consequently, t1[V −W ] = t2[V −W ] or t1[W (R−V )] =
t2[W (R − V )]. In summary, we have t1[X

+
Σ,Rs

W (V − W )] = t2[X
+
Σ,Rs

W (V − W )] or

t1[X
+
Σ,Rs

W (R − V )] = t2[X
+
Σ,Rs

W (R − V )]. The first case implies t1[UV ] = t2[UV ] and
the second case implies t1[U(R− V )] = t2[U(R− V )], respectively. In any case we know
that rφ satisfies U � V .
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Let U → V ∈ Σ. Suppose that t1[U ] = t2[U ] and t1, t2 are U -total. As before let

W :=
∪

{Wj ∈ DepBΣ,Rs(X) | Wj ∩ U ̸= ∅}.

From t1[U ] = t2[U ] and the construction of rφ we conclude that t1[W ] = t2[W ]. As before
we conclude that X � X+

Σ,Rs
W ∈ Σ+

D. As before, it follows from the construction of rφ
that

U ⊆ X((X+
Σ,Rs

W ) ∩Rs).

We now apply the null mixed pseudo-transitivity rule TFM to X � X+
Σ,Rs

W ∈ Σ+
D,

U → V ∈ Σ+
D and U ⊆ X((X+

Σ,Rs
W )∩Rs) to infer X → V −X+

Σ,Rs
W ∈ Σ+

D. As before, we

conclude thatX → ((V −W )∩X+
Σ,Rs

) ∈ Σ+
D, and thereforeX → V −W ∈ Σ+

D by means of

the FD union rule UF. Therefore, V −W ⊆ X+
Σ,Rs

. Consequently, t1[V −W ] = t2[V −W ]
and since t1[W ] = t2[W ] holds as well, we conclude t1[V ] = t2[V ]. Therefore, rφ satisfies
U → V .

Finally, suppose there is some FD φ, say X → Y , such that φ /∈ Σ+
D. Due to

the FD union rule UF there is some A ∈ Y such that X → A /∈ Σ+
D. It follows that

A /∈ X+
Σ,Rs

. Without loss of generality let A ∈ Wi. Let rφ be the two-tuple relation from
before. It follows that rφ violates X → Y since t1[X] = t2[X] and t1, t2 are X-total, and
t1(A) ̸= t2(A). We know that rφ satisfies Σ and the NFS Rs. Consequently, φ /∈ Σ∗

Rs
.

We have shown the completeness of D for the implication of FDs and MVDs in the
presence of an NFS.

The two-tuple counter-example relation that we utilize in the proof of Theorem 2
allows us to derive the following corollary.

Corollary 1 Let Σ ∪ {φ} denote a set of FDs and MVDs, and let Rs denote an NFS
over the relation schema R. Then Σ |=Rs φ if and only if Σ |=2,Rs φ.

Proof If Σ |=2,Rs φ does not hold, then Σ |=Rs φ does not hold. If Σ |=Rs φ does not
hold, then Σ ⊢D φ does not hold by the soundness of D. Consequently, we can utilize
the same two-tuple relation rφ as in the proof of Theorem 2 to derive that Σ |=2,Rs φ
does not hold.

In the electronic appendix we show how our axiomatization D subsumes three ax-
iomatizations [25, 19, 23] for the special cases where i) Rs = R [19], ii) Rs = ∅ [23], and
iii) the set Σ consists of FDs only [25]. That is, we show how the rules in these axiomati-
zations can be derived from our axiomatization D when restricted to the corresponding
special case, respectively. Moreover, we show in the electronic appendix an even stronger
result than that reported in Corollary 1. That is, if r is an arbitrary relation that satisfies
Σ and Rs but violates φ, then there is some two-tuple subrelation r′ ⊆ r that satisfies Σ
and Rs but violates φ.

Remark 3 The system D′ := (D− {TFM}) ∪ {T̄FM}, where T̄FM denotes

X � Y Y → Z

X → Z − Y
Y ⊆ XRs,

18



is incomplete. Let R = ABC, Rs = A, Σ = {∅ � AB,A → BC} and φ = ∅ → C. Due
to the soundness of TFM it follows that φ is implied by Σ in the presence of Rs. However,
φ cannot be inferred from Σ by the system D′. In particular, an inference of φ from
∅ � AB and from AB → BC by an application of T̄FM would require the attribute B to
be an element of Rs. Similar observations show that the system D′′ := (D− {TM})∪{T̄M},
where T̄M denotes the rule

X � Y Y � Z

X � Z − Y
Y ⊆ XRs,

is also incomplete.

5.3 Algorithms

In this subsection we will establish algorithms for i) deciding the implication problem
Σ |=Rs φ for sets Σ ∪ {φ} of FDs and MVDs in the presence of an arbitrary NFS Rs,
and ii) computing the dependency basis DepBΣ,Rs(X) of an attribute set X with respect
to Σ and Rs. We will derive a tight worst-case upper time bound that highlights the
impact of the NFS Rs. The results follow from a reduction of the implication problem
to its counter-part over total relations. The reduction itself is a consequence of our
axiomatization.

5.3.1 The special case of total relations

For total relations, Beeri [18] presented an algorithm for computing DepBΣ,R(X) that
runs in time O(|Σ|4). It is based on Beeri’s rules:

X � W Y � Z

X �W ∩ Z
W ∩ Y = ∅ X � W Y � Z

X �W − Z
W ∩ Y = ∅ .

The idea of Beeri’s algorithm for computing the dependency basis DepBΣ,R(X) is to
start with a partition B := {R−X,A | A ∈ X} of R which is then refined incrementally
by applying Beeri’s rules to sets W ∈ B and dependencies Y � Z or Y → Z ∈ Σ that
meet the conditions in Beeri’s rules and satisfy W ∩ Z ̸= ∅ and W − Z ̸= ∅. In each
step, W is split into W ∩ Z and W − Z. Note that Σ ⊢D X � W for all W ∈ B is a
loop invariant. The algorithm stops when no further refinement is possible. The final
partition B is then the dependency basis DepBΣ,R(X) of X with respect to Σ and R.

More sophisticated implementations of this idea by Hagihara et al. [60] resulted in
an O(min{(fΣ + kΣ)

2 × dΣ, |Σ|2}) time algorithm, and later by Galil [59] resulted in an
O(|Σ| + min{kΣ, log pΣ} × |Σ|) time algorithm. Herein, fΣ, kΣ and dΣ are the numbers
of FDs, of MVDs, and of distinct attributes, respectively, in Σ, while pΣ denotes the
number of sets in DepBΣ,R(X). Note that Galil’s algorithm runs in linear time when Σ
contains only FDs but no MVDs.

Let Σ be a set of FDs and MVDs. If DepBΣ,R(X) is known, the implication problem
Σ |=R φ for a given FD or MVD φ with left-hand side X can be decided in linear time.
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In particular, Σ |=R X → A holds when {A} ∈ DepBΣ,R(X) and Σ contains a non-trivial
FD Y → Z with A ∈ Z. Galil established an

O(|Σ|+min{kΣ, log p̄Σ} × |Σ|)

time algorithm for deciding Σ |=R φ [59]. Here, p̄Σ is the number of sets in DepBΣ,R(X)
that have non-empty intersection with the right-hand side of φ.

5.3.2 The general case

Let Σ[U ] contain only those dependencies from Σ whose left-hand side is a subset of the
attribute set U . For an FD or MVD φ let lhs(φ) denote the set of attributes that occur
on the left-hand side of φ. Let S1 denote an axiomatization for the implication of FDs
and MVDs over total relations [27].

Lemma 2 Let Σ ∪ {φ} be a set of FDs and MVDs, and Rs an NFS over the relation
schema R. Then the following are equivalent:

1. Σ ⊢D φ,

2. Σ[lhs(φ)Rs] ⊢D φ, and

3. Σ[lhs(φ)Rs] ⊢S1 φ.

Proof Since Σ[lhs(φ)Rs] is a subset of Σ, it follows that (2) implies (1). A simple
induction over the length of an inference of φ from Σ by D shows that φ can already be
inferred from Σ[lhs(φ)Rs] by D. Hence, (1) also implies (2). The equivalence of (2) and
(3) follows from the fact that both S1 and D are axiomatizations for the implication of
FDs and MVDs over total relations.

Corollary 2 Let Σ be a set of FDs and MVDs, Rs an NFS and X an attribute set over
the relation schema R. Then

1. X+
Σ,Rs

= X+
Σ[XRs],Rs

= X+
Σ[XRs],R

, and

2. DepBΣ,Rs(X) = DepBΣ[XRs],Rs(X) = DepBΣ[XRs],R(X).

We conclude that Galil’s algorithm, developed specifically for the case of total rela-
tions, applies even to the general case of an arbitrary NFS Rs. Indeed, we only need to
consider dependencies Y � Z or Y → Z ∈ Σ[XRs].

Corollary 3 Let Σ be a set of FDs and MVDs, Rs an NFS and X an attribute set
over the relation schema R. Then Galil’s algorithm [59] computes the dependency basis
DepBΣ,Rs(X) of X with respect to Σ and Rs in time O(|Σ|+min{kΣ[XRs], log pΣ[XRs]}×
|Σ[XRs]|).

Let Σ be a set of FDs and MVDs, and Rs an NFS over R. If DepBΣ,Rs(X) is known,
the implication problem Σ |=Rs φ for a given FD or MVD φ with left-hand side X can
be decided in linear time. In particular, Σ |=Rs X → A holds when {A} ∈ DepBΣ,Rs(X)
and Σ[XRs] contains a non-trivial FD Y → Z with A ∈ Z.
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Corollary 4 Using Galil’s algorithm [59], the implication problem Σ |=Rs φ of sets
Σ∪{φ} of FDs and MVDs and NFS Rs over a relation schema R can be decided in time
O(|Σ|+min{kΣ[lhs(φ)Rs], log p̄Σ[lhs(φ)Rs]} × |Σ[lhs(φ)Rs]|).

Proof The problem Σ |=Rs φ is equivalent to Σ ⊢D φ according to Theorem 2. Lemma
2 shows us that this problem is the same as deciding whether Σ[lhs(φ)Rs] ⊢S1 φ, and
according to the soundness and completeness of S1 this is equivalent to deciding whether
Σ[lhs(φ)Rs] |=R φ. The last problem can be decided by Galil’s algorithm in O(|Σ| +
min{kΣ[lhs(φ)Rs], log p̄Σ[lhs(φ)Rs]} × |Σ[lhs(φ)Rs]|) time.

5.3.3 Characterization of implication

The proof of Corollary 4 implies the following characterization of the implication prob-
lem in terms of reducing the given set of data dependencies based on the candidate
dependency φ and the NFS Rs.

Corollary 5 Let Σ ∪ {φ} be a set of FDs and MVDs, and Rs an NFS over the relation
schema R. Then Σ |=Rs φ if and only if Σ[lhs(φ)Rs] |=R φ.

5.3.4 A correction to Atzeni and Morfuni’s algorithm

Based on Theorem 1 an FD X → Y is implied by an FD set Σ in the presence of an
NFS Rs over R if and only if Y ⊆ X+

Σ,Rs
. Atzeni and Morfuni proposed an algorithm

NFSClosure(X,Σ,Rs,R) for computing the closure X+
Σ,Rs

of an attribute set X with
respect to an FD set Σ and an NFS Rs over a relation schema R [25, Algorithm 3,
page 14]. We report a flaw of this algorithm and a simple correction of it. As an
example of the flaw, consider the relation schema Employment={Emp,Dept,Mgr} with
the NFS {Dept} and let Σ consist of the two FDs Emp → Dept and Dept → Mgr.
On input ({Emp},Σ,{Dept},Employment), the original algorithm [25] returns the set
{Emp,Dept}. However, the correct result is the set {Emp,Dept,Mgr}. This can be verified
easily by an application of the null transitivity rule, see Remark 2, to Emp → Dept, and
Dept → Mgr and Dept ∈ Employments to infer the FD Emp → Mgr. We will now
present an algorithm that corrects the flaw.

Algorithm 1 works very similar to Beeri and Bernstein’s algorithm for computing
the closure in the special case of total relations [56]. The only difference is that, in the
presence of an NFS Rs, it suffices to consider FDs V → W ∈ Σ where V ⊆ XRs holds.
The minor flaw of Atzeni and Morfuni’s algorithm [25] results from the incorrectly stricter
restriction that V ⊆ Rs.

Example 5 Consider the relation schema Employment with the null-free subschema
Employments = {Emp,Mgr}, and let Σ consist of the two FDs Emp → Dept and
Dept → Mgr. On input ({Emp},Σ,Employments,Employment) Algorithm 1 returns
the set {Emp,Dept}. Consequently, the FD Emp → Mgr is not implied by Σ in the
presence of the NFS Employments since Mgr is not an element of {Emp}∗Σ,Employments

=
{Emp,Dept}.

21



ALGORITHM 1: NFSClosure(X,Σ,Rs,R)

Input: attribute subset X, FD set Σ, NFS Rs all over relation schema R.
Output: attribute closure X+

Σ,Rs
of X with respect to Σ and Rs.

CLOSURE = X;
repeat

OLDCLOSURE = CLOSURE;
for each V → W ∈ Σ do

if V ⊆ CLOSURE ∩XRs then
CLOSURE = CLOSURE ∪W ;

end

end

until OLDCLOSURE = CLOSURE;
return CLOSURE ;

Note that our results show that Galil’s algorithm can also decide any instance Σ |=Rs

φ of the implication problem for FDs in the presence of an NFS Rs, cf. Corollary 4.
However, the flaw of the original NFSClosure algorithm [25] has not been pointed out
nor corrected previously.

5.3.5 Sagiv’s algorithms

Alternative algorithms for computing the dependency basis and deciding implication over
total relations were given by Sagiv [63], cf. Section 6. Though Sagiv’s approach does not
provide better time bounds, it is of interest as it directly exploits the equivalence between
the implication of FDs and MVDs over total relations and the logical implication in a
fragment of propositional logic. Galil [59] predicts that using this equivalence one may
possibly come up with a linear time algorithm to decide implication. This provides strong
motivation for investigating the implication of FDs and MVDs in the presence of an NFS
from a logical point of view.

6 Equivalences to Boolean and Para-consistent Im-

plication

For the special case where the NFS covers every attribute of the underlying relation
schema, Sagiv, Delobel, Parker and Fagin showed an equivalence between the implica-
tion of the combined class of FDs and MVDs and the Boolean implication of a propo-
sitional fragment F [64, 21]. In this section, we will establish an equivalence between
the implication problem of the combined class of FDs and MVDs in the presence of
an arbitrary NFS and the implication problem of the fragment F in a family LPS of
para-consistent logics. LPS implication is equivalent to S-3 implication in Cadoli and
Schaerf’s well-known approximation logic [79]. In fact, the NFS corresponds to the set
S of propositional variables V ′ which cannot be paradoxical (i.e. V ′ cannot be true and
false at the same time) in LPS interpretations, or equivalently, where either V ′ or ¬V ′ is
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Table 3: Truth functions in LPS
¬

T F
P P
F T

∧ T P F
T T P F
P P P F
F F F F

∨ T P F
T T T T
P T P P
F T P F

→ T P F
T T P F
P T P P
F T T T

true but not both in S-3 interpretations. For Lien’s class of FDs and MVDs we obtain an
equivalence to LP implication in Graham Priest’s well-known Logic of Paradox [80]. For
Atzeni and Morfuni’s class of FDs in the presence of an NFS we obtain an equivalence
to S-3 implication for propositional Horn clauses. In the electronic appendix, we will
show how our techniques can be applied to characterize the implication of full first-order
hierarchical decompositions, and the implication of Boolean dependencies in the presence
of an NFS, respectively.

6.1 The Family LPS of para-consistent Logics

The proof-theoretic aim of para-consistent logics is to reason about systems that may be
inconsistent. Formalisms such as theory change deal with inconsistencies in knowledge
bases by avoiding them, and by removing them once they are located. Para-consistent
logics reason non-explosively in the presence of inconsistencies. In classical logic, a theory
is consistent if and only if it has a model. The trademark of para-consistent logics is that
inconsistent theories can have models.

In our family of para-consistent logics a sentence is either true (and not false), denoted
by T, or false (and not true), denoted by F, or paradoxical (both true and false), denoted
by P. This yields a family of three-valued logics based on Kleene’s truth tables (Table
3), but the third truth value indicates that a sentence is paradoxical, as opposed to being
undefined or undetermined in strong Kleene logic [88]. Codd [65] suggested the same
tables for the null interpretation of “value unknown at present” to extend the relational
algebra by means of a three-valued logic and the null substitution principal, cf. Section
7.

Let L∗ denote the propositional language over a finite set L of propositional vari-
ables, generated from the unary connective ¬ (negation), and the binary connectives ∧
(conjunction) and ∨ (disjunction). L∗ is the smallest set that satisfies:

1. L ⊆ L∗,

2. if φ′ ∈ L∗, then (¬φ′) ∈ L∗, and

3. if φ′
1, φ

′
2 ∈ L∗, then (φ′

1 ∨ φ′
2) ∈ L∗ and (φ′

1 ∧ φ′
2) ∈ L∗.

For convenience, we also use the binary connective → (implication) defined by φ′
1 →

φ′
2 := (¬φ′

1) ∨ φ′
2. The corresponding truth table is shown in Table 3. We assume

that negation binds stronger than conjunction and disjunction, and that conjunction
and disjunction bind stronger than implication. We omit parentheses if it does not cause
ambiguity.
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We may call the formulae of L∗ also L-formulae. We denote variables with upper-
case accented Latin letters, e.g. A′, B′, C ′, or subscripted as A′

1, A
′
2, A

′
3. Note that we

use accented versions to denote the correspondence between propositional variables and
attributes, e.g. the propositional variable A′ corresponds to the attribute A. Elements of
L∗ are denoted by lower-case Greek letters such as φ′, σ′, ψ′, or their subscripted version,
and subsets of L∗ are denoted by the upper-case Greek letter Σ′.

An LP interpretation ω′ of L is a total function from L to the set of truth values
{F,P,T}. For S ⊆ L, an LP interpretation ω′ of L is an LPS interpretation, if for all
A′ ∈ S we have ω′(A′) ∈ {F,T}. A variable in S is said to be paradox-free.

The semantics of an L-formula φ′ in an LP interpretation ω′ of L is defined in the
usual compositional way given by the truth tables in Table 3. That is, we can extend ω′

to a total function Ω′ : L∗ → {F,P,T} as follows:

1. Ω′(A′) := ω′(A′) for all A′ ∈ L,

2. Ω′(¬φ′) := ¬Ω′(φ′),

3. Ω′(φ′ ∧ ψ′) := Ω′(φ′) ∧ Ω′(ψ′), and

4. Ω′(φ′ ∨ ψ′) := Ω′(φ′) ∨ Ω′(ψ′).

As usual, the left-hand sides of the definitions contain the symbols that denote the
connectives that generate L∗ from L, whereas the right-hand sides of the definitions
contain the symbols that denote the semantic truth functions defined in Table 3.

When working with more than two truth values, one has to define the set of designated
values. For our family of LPS logics we have {P,T} as the set of designated truth values
since a paradoxical formula is true (and false).

An LP interpretation ω′ is a model of a set Σ′ of L-formulae, denoted by |=ω′ Σ′, if
and only if for all σ′ ∈ Σ′ we have Ω′(σ′) ∈ {P,T}. For S ⊆ L, we say that Σ′ LPS
implies an L-formula φ′, denoted by Σ′ |=LPS φ

′, if and only if every LPS interpretation
that is a model of Σ′ is also a model of φ′. For the special case where S = ∅ we may
simply speak of an LP interpretation or LP model, respectively.

Let Σ′ = {A′ → B′, B′ → C ′} and φ′ = A′ → C ′. The LP interpretation ω′ that
maps A′ to T, B′ to P and C ′ to F shows that Σ′ does not LP imply φ′, i.e., Σ′ ̸|=LP φ

′.
However, it is not difficult to see that Σ′ LP{B′} implies φ′.

LP is distinguished from classical logic by the invalidity of the Modus Ponens, e.g.
from A′ and A′ → B′ one may not conclude B′: assign F to B′ and P to A′.

6.2 Equivalences to LPS implication

In a first step, we define the fragment of L-formulae that corresponds to FDs and MVDs
in the presence of an NFS Rs over a relation schema R. Let ϕ : R → L denote a bijection
between R and the set L = {A′ | A ∈ R} of propositional variables that corresponds
to R. For an NFS Rs over R let S = ϕ(Rs) be the set of propositional variables in L
that corresponds to Rs. Hence, the paradox-free variables of L are the images of those
attributes of R declared NOT NULL.
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We now extend ϕ to a mapping Φ from the set of FDs and MVDs over R to the set
L∗. For an attribute set X = {A1, . . . , An} we write

∧
A∈X

A′ as a shortcut for A′
1∧· · ·∧A′

n.

For an FD X → B over R, let

Φ(X → B) :=

(∧
A∈X

A′

)
→ B′.

For the sake of presentation, but without loss of generality, assume that FDs have only
a single attribute on their right-hand side. For an MVD X � Y over R, let

Φ(X � Y ) :=

(∧
A∈X

A′

)
→

(( ∧
B∈Y−X

B′

)
∨

( ∧
C∈R−XY

C ′

))
.

As usual, disjunctions over zero disjuncts are interpreted as F and conjunctions over zero
conjuncts are interpreted as T. In what follows, we may simply denote Φ(φ) = φ′ and
Φ(Σ) = {σ′ | σ ∈ Σ} = Σ′.

Example 6 Let R = ASLC denote the relation schema Supplies, Rs = ALC and let
Σ contain the FDs σ1 = A → S and σ2 = AL → C, and the MVD σ3 = S � L.
Let φ1 = A � L and φ2 = A → C. Then L = {A′, S ′, L′, C ′}, S = {A′, L′, C ′},
Σ′ = {σ′

1, σ
′
2, σ

′
3} with σ′

1 = A′ → S ′, σ′
2 = A′ ∧ L′ → C ′, and σ′

3 = S ′ → L′ ∨ (A′ ∧ C ′),
as well as φ′

1 = A′ → L′ ∨ (S ′ ∧ C ′) and φ′
2 = A′ → C ′.

Our aim is to show that for every relation schema R, for every FD and MVD set
Σ ∪ {φ} and for every NFS Rs over R, there is some Rs-total relation r that satisfies Σ
and violates φ if and only if there is an LPS model ω′

r of Σ
′ that is not an LPS model of

φ′. For arbitrary finite relations r it is not obvious how to define the LPS interpretation
ω′
r.
Corollary 1 tells us that for deciding the implication problem Σ |=Rs φ it suffices to

examine two-tuple relations (instead of arbitrary finite relations). For two-tuple rela-
tions {t1, t2}, however, we can define a corresponding LP interpretation ω′

{t1,t2}. For this
purpose, we introduce an extension of the notion of agree sets of distinct tuples to the
presence of null markers [89, 29]. For two tuples t1, t2 over relation schema R we define

ags(t1, t2) = {A ∈ R | t1(A) = t2(A) and t1(A) ̸= ni ̸= t2(A)},
agw(t1, t2) = {A ∈ R | t1(A) = ni = t2(A)},
ag(t1, t2) = ags(t1, t2) ∪ agw(t1, t2) .

If A ∈ ags(t1, t2) we say that t1 and t2 agree strongly on A. If A ∈ agw(t1, t2) we say that
t1 and t2 agree weakly on A, and if A /∈ ag(t1, t2) we say that t1 and t2 disagree on A.

We now define the special LP interpretation: for two tuples t1, t2 over the relation
schema R let ω′

{t1,t2} denote the following LP interpretation of L:

ω′
{t1,t2}(A

′) =


T , if A ∈ ags(t1, t2)
P , if A ∈ agw(t1, t2)
F , if A /∈ ag(t1, t2)

.
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Note that the special LP interpretation is a generalization of Fagin’s special truth
assignment: for all S ⊆ L and for all variables A′ ∈ S we have ω′

{t1,t2}(A
′) = T if and

only if t1(A) = t2(A) [64]. The following lemma shows that the special LP interpretation
is an LPS interpretation whenever {t1, t2} is Rs-total.

Lemma 3 Let R be some relation schema, r a two-tuple relation over R and Rs an NFS
over R. Let L be the set of propositional variables that corresponds to R, and S the set
of propositional variables that corresponds to Rs. If r satisfies Rs, then ω′

r is an LPS
interpretation of L, i.e., for all A′ ∈ S it is true that ω′

r(A
′) ̸= P.

Proof If r satisfies Rs, then the two tuples of r are Rs-total. According to the definition
of the special LP interpretation ω′

r it cannot be the case that ω′
r(A

′) = P for any A′ ∈
S.

The converse of Lemma 3 is not valid. In fact, let R = AB and Rs = A, and let
r = {(a, b), (ni, b′)}. We have ω′

r(A
′) = F = ω′

r(B
′), but r violates Rs = A. However,

note that we can replace the null marker occurrence ni in r by a non-null marker different
from a. The resulting relation r′ satisfies Rs = A and ω′

r′ = ω′
r. This strategy is always

applicable.

Lemma 4 Let R be some relation schema, and Rs an NFS over R. Let L be the set
of propositional variables that corresponds to R, and S the set of propositional variables
that corresponds to Rs. Let ω′ be an LPS interpretation of L, i.e. for all A′ ∈ S it is
true that ω′(A′) ̸= P. Then there is a two-tuple relation r over R such that r satisfies Rs

and ω′
r = ω′.

Proof Define a tuple t over R as follows: for A ∈ R let t1(A) := a ∈ dom(A)− {ni}, if
ω′(A′) ̸= P, and t1(A) := ni otherwise. Define another tuple t2 over R as follows: i) let
t2(A) := t1(A), if ω

′(A′) ̸= F, and ii) let t2(A) := a′ ∈ dom(A) − {ni, t1(A)} otherwise.
Let r := {t1, t2}. From this definition it follows that r is Rs-total. Moreover, for all
A′ ∈ L we have ω′

r(A
′) = ω′(A′).

The following lemma justifies the definitions of the corresponding fragment of L-
formulae and the special LP interpretation of L.

Lemma 5 Let r be a two-tuple relation over relation schema R, and let φ denote an FD
or MVD over R. Then r satisfies φ if and only if ω′

r is an LP model of φ′.

Proof Let r = {t1, t2}.
Sufficiency. Assume that ω′

r is an LP model of φ′. We show that r satisfies φ.
First, let φ denote the FD X → B where X = {A1, . . . , An}. If t1[X] = t2[X] and

t1, t2 are X-total, then ω′
r(A

′
i) = T for all i = 1, . . . , n. Since ω′

r is an LP model of φ′ it
follows that ω′

r(B) ̸= F. Hence, B ∈ ag(t1, t2). That is, r satisfies φ.
Now let φ denote the MVD X � Y where X = {A1, . . . , An}, Y −X = {B1, . . . , Bm}

and R − XY = {C1, . . . , Cl}. If t1[X] = t2[X] and t1, t2 are X-total, then ω′
r(A

′
i) = T

for all i = 1, . . . , n. Since ω′
r is an LP model of φ′ it follows that not both B′

1 ∧ · · · ∧B′
m
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and C ′
1 ∧ · · · ∧ C ′

l are F under ω′
r. That is, if ω′

r(B
′
j) = F for some 1 ≤ j ≤ m, then for

all k = 1, . . . , l we have ω′
r(C

′
k) ̸= F. Hence, for all k = 1, . . . , l we have Ck ∈ ag(t1, t2).

Therefore, r satisfies X � Y .
Necessity. Assume that r satisfies φ. We show that ω′

r is an LP model of φ′.
First, let φ′ denote the formula ¬A′

1∨ · · · ∨¬A′
n∨B. Suppose that ω′

r(A
′
i) = T for all

i = 1, . . . , n (otherwise ω′
r is an LP model of φ′). It follows that t1[X] = t2[X] and t1, t2

are X-total. Since r satisfies φ it follows that B ∈ ag(t1, t2). Consequently, ω′
r(B) ̸= F.

Therefore, ω′
r is an LP model of φ′.

Now let φ′ denote the formula

¬A′
1 ∨ · · · ∨ ¬A′

n ∨ (B′
1 ∧ · · · ∧B′

m) ∨ (C ′
1 ∧ · · · ∧ C ′

l).

Suppose that ω′
r(A

′
i) = T for all i = 1, . . . , n (otherwise ω′

r is an LP model of φ′). It
follows that t1[X] = t2[X] and t1, t2 are X-total. Since r satisfies φ it follows that for
all j = 1, . . . ,m we have Bj ∈ ag(t1, t2) or for all k = 1, . . . , l we have Ck ∈ ag(t1, t2).
Hence, not both B′

1 ∧ · · · ∧B′
m and C ′

1 ∧ · · · ∧C ′
m evaluate to F under ω′

r. Consequently,
ω′
r is an LP model of φ′.

In fact, Corollary 1 and Lemmata 3, 4 and 5 allow us to establish the anticipated
equivalence between the implication of FDs and MVDs in the presence of an NFS Rs

and the LPS implication of their corresponding fragment of L-formulae.

Theorem 3 Let Σ ∪ {φ} be a set of FDs and MVDs, and let Rs be an NFS over some
relation schema R. Let L be the set of propositional variables that corresponds to R, S
the set of propositional variables that corresponds to Rs, and let Σ′ ∪ {φ′} denote the set
of L-formulae that corresponds to Σ ∪ {φ}. Then Σ |=Rs φ if and only if Σ′ |=LPS φ

′.

Proof According to Corollary 1 it suffices to show that Σ |=2,Rs φ if and only if Σ′ |=LPS

φ′.
We show first that if Σ′ |=LPS φ

′ holds, then Σ |=2,Rs φ holds, too. For this purpose,
suppose that Σ |=2,Rs φ does not hold. Consequently, there is some two-tuple relation
r over R that satisfies Σ and Rs but violates φ. Following Lemma 3, ω′

r is an LPS
interpretation. According to Lemma 5, ω′

r is an LPS model of Σ′ but not an LPS model
of φ′. Consequently, Σ′ |=LPS φ

′ does also not hold.
It now remains to show that if Σ |=2,Rs φ holds, then Σ′ |=LPS φ′ holds, too. For

this purpose, suppose that Σ′ |=LPS φ
′ does not hold. Consequently, there is some LPS

interpretation ω′ of L that is a model of Σ′ but not a model of φ′. According to Lemma
4 there is some two-tuple relation r that satisfies Rs and ω

′
r = ω′. In particular, since ω′

violates φ′ the construction in the proof of Lemma 4 ensures that r is subsumption-free.
Since ω′

r = ω′, Lemma 5 guarantees that r satisfies Σ but violates φ. We conclude that
Σ |=2,Rs φ does also not hold.

Example 7 Let R = ASLC denote the relation schema Supplies, Rs = ALC and let
Σ contain the FDs A→ S and AL→ C, and the MVD S � L. The following relation r
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Article Supplier Location Cost
Kiwi ni Maunganui 1.50
Kiwi ni Taranaki 2.50

shows that Σ implies neither the MVD φ1 = A � L nor the FD φ2 = A → C in the
presence of Rs. For ω′

r we obtain ω′
r(A

′) = T, ω′
r(S

′) = P, ω′
r(L

′) = F and ω′
r(C

′) = F.
Indeed, ω′

r is an LP{A′,L′,C′} model of Σ′ but not an LP{A′,L′,C′} model of neither φ′
1 nor

φ′
2.

Remark 4 Note that the proof of Theorem 3 is not a simple extension of the proof for the
special case where Rs = R [21]. In particular, we utilize the two-tuple relation from the
proof of Theorem 2, whereas Sagiv, Delobel, Parker and Fagin show that every relation
that satisfies Σ and violates φ contains a two-tuple subrelation that satisfies Σ and violates
φ. While this is a stronger result, our proof shows that this result is not necessary to
establish the equivalence to the implication in logical fragments, in particular not for the
special case where Rs = R. However, we do extend the stronger result to the general case
of arbitrary null-free subschemata in the electronic appendix.

6.3 Equivalences to LP and S-3 implication

6.3.1 Logic of Paradox

Priest [80] introduced the Logic of Paradox LP as “a new way of handling the logical
paradoxes”. Priest argues that “the most satisfactory account of the paradoxes is to view
as what they appear, prima facie, to be true contradictions, i.e., sentences such that both
they and their negations are true”. Our family of LPS logics subsumes the logic LP as
the special case where S is the empty set of variables.

6.3.2 S-3 Logics

Schaerf and Cadoli [79] introduced S-3 logics as “a semantically well-founded logical
framework for sound approximate reasoning, which is justifiable from the intuitive point
of view, and to provide fast algorithms for dealing with it even when using expressive
languages”. For a finite set L of propositional variables let Lℓ denote the set of all literals
over L, i.e., Lℓ = L ∪ {¬A′ | A′ ∈ L} ⊆ L∗. Let S ⊆ L. An S-3 interpretation of L is a
total function ω̂ : Lℓ → {F,T} that maps every variable A′ ∈ S and its negation ¬A′ into
opposite values (ω̂(A′) = T if and only if ω̂(¬A′) = F), and that does not map both a
variable A′ ∈ L−S and its negation ¬A′ into F (we must not have ω̂(A′) = F = ω̂(¬A′)
for any A′ ∈ L − S). Accordingly, for each variable A′ ∈ L and each S-3 interpretation
ω̂ of L there are the following possibilities:

• ω̂(A′) = T and ω̂(¬A′) = F,

• ω̂(A′) = F and ω̂(¬A′) = T,

• ω̂(A′) = T and ω̂(¬A′) = T (only if A′ ∈ L − S).
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S-3 interpretations generalize both standard 2-valued interpretations and the 3 inter-
pretations of Levesque [90]. That is, a 2-valued interpretation is an S-3 interpretation
where S = L, while a 3 interpretation is an S-3 interpretation with S = ∅. Hence, in S-3
interpretations the situation where A′ and ¬A′ are both true corresponds to the situation
in LPS interpretations where A′ is P.

An S-3 interpretation ω̂ : Lℓ → {F,T} of L can be lifted to a total function Ω̂ : L∗ →
{F,T}. This lifting has been defined as follows [79]. An arbitrary formula φ′ in L∗ is
firstly converted (in linear time in the size of the formula) into its corresponding formula
φ′
N in Negation Normal Form (NNF) using the following rewriting rules: ¬(φ′ ∧ ψ′) 7→

(¬φ′ ∨ ¬ψ′), ¬(φ′ ∨ ψ′) 7→ (¬φ′ ∧ ¬ψ′), and ¬(¬φ′) 7→ φ′. Therefore, negation in a
formula in NNF occurs only at the literal level. The rules for assigning truth values to
NNF formulae are as follows:

• Ω̂(φ′) = ω̂(φ′), if φ′ ∈ Lℓ,

• Ω̂(φ′ ∨ ψ′) = T if and only if Ω̂(φ′) = T or Ω̂(ψ′) = T,

• Ω̂(φ′ ∧ ψ′) = T if and only if Ω̂(φ′) = T and Ω̂(ψ′) = T.

An S-3 interpretation ω̂ is a model of a set Σ′ of L-formulae if and only if Ω̂(σ′
N) = T

holds for every σ′ ∈ Σ′. We say that Σ′ S-3 implies an L-formula φ′, denoted by Σ′ |=3
S φ

′,
if and only if every S-3 interpretation that is a model of Σ′ is also a model of φ′. S-3
interpretations are related closely to LPS interpretations.

Proposition 1 Let S ⊆ L and ω′ : L → {F,P,T} be an LPS interpretation of L, i.e. for
all A′ ∈ S, ω′(A′) ̸= P. Then we can associate in a bijective way an S-3 interpretation
ω̂′ : Lℓ → {F,T}, i.e. for all A′ ∈ L we never have ω̂′(A′) = F = ω̂′(¬A′), and for all
A′ ∈ S, ω̂′(A′) ̸= ω̂′(¬A′), where ω̂′ is:

• ω̂′(A′) = T and ω̂′(¬A′) = F if and only if ω′(A′) = T,

• ω̂′(A′) = F and ω̂′(¬A′) = T if and only if ω′(A′) = F,

• ω̂′(A′) = T and ω̂′(¬A′) = T if and only if ω′(A′) = P.

For all formulae φ′ ∈ L∗ we have Ω̂′(φ′
N) = T if and only if Ω′(φ′) ∈ {P,T}.

Proposition 1 and Theorem 3 establish the equivalence between the implication of
FDs and MVDs in the presence of an NFS Rs over a relation schema R, and the S-3
implication of the corresponding fragment of L-formulae.

Corollary 6 Let Σ∪{φ} be a set of FDs and MVDs over the relation schema R, and let
Rs denote an NFS over R. Let L denote the set of propositional variables that corresponds
to R, S the set of variables that corresponds to Rs, and Σ′ ∪ {φ′} the set of L-formulae
that corresponds to Σ ∪ {φ}. Then Σ |=Rs φ if and only if Σ′ |=3

S φ
′.
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We may also define the special -3-interpretation: for two tuples t1, t2 over the relation
schema R let ω̂′

{t1,t2} denote the following 3-interpretation of L: for all A ∈ R, if t1(A) =

t2(A) and t1(A) ̸= ni ̸= t2(A), then ω̂′
{t1,t2}(A

′) = T and ω̂′
{t1,t2}(¬A

′) = F, if t1(A) =

ni = t2(A), then ω̂′
{t1,t2}(A

′) = T and ω̂′
{t1,t2}(¬A

′) = T, and if t1(A) ̸= t2(A), then

ω̂′
{t1,t2}(A

′) = F and ω̂′
{t1,t2}(¬A

′) = T. In particular, if {t1, t2} is Rs-total, then ω̂
′
{t1,t2} is

an S-3 interpretation. The following example continues Example 7.

Example 8 Let R = ASLC denote the relation schema Supplies, Rs = ALC and let
Σ contain the FDs A→ S and AL→ C, and the MVD S � L. The following relation r

Article Supplier Location Cost
Kiwi ni Maunganui 1.50
Kiwi ni Taranaki 2.50

shows that Σ implies neither the MVD φ1 = A � L nor the FD φ2 = A → C in
the presence of Rs. For ω̂′

r we obtain ω̂′
r(V ) = T, if V ∈ {A′, S ′,¬S ′,¬L′,¬C ′}, and

ω̂′
r(V ) = F, if V ∈ {¬A′, L′, C ′}. Indeed, ω̂′

r is an {A′, L′, C ′}-3 model of Σ′ but neither
an {A′, L′, C ′}-3 model of φ′

1 nor φ′
2.

Remark 5 Cadoli and Schaerf [79] have shown that S-3 entailment is equivalent to S-3
unsatisfiability. Furthermore, they have reduced tests for S-3 satisfiability to tests for
Boolean satisfiability. Therefore, classic algorithms for satisfiability like Davis and Put-
nam’s [91] or Robinson’s [92] can be applied to S-3 entailment, and, by our results, to
decide implication of FDs and MVDs in the presence of an NFS. Vice versa, our al-
gorithms for deciding implication of FDs and MVDs in the presence of an NFS can be
applied to decide S-3 entailment and S-3 satisfiability of the corresponding fragments of
propositional formulae. In particular, Dowling and Gallier’s unit propagation algorithm
[93], developed to decide entailment of Horn clauses, can be applied to decide the impli-
cation of FDs in the presence of an NFS. Vice versa, Algorithm 1 for the computation of
attribute set closures can be applied to decide the S-3 entailment of Horn clauses.

Finally, we exemplify that our framework allows very general reasoning about key
and uniqueness constraints.

Example 9 Let Supplier = ASLC, SupplierS = SLC and Σ = {A → S,AL →
C,AC → L, S � L}. It follows that A → SLC is implied by Σ in the presence of
SupplierS . Hence, A is a uniqueness constraint, i.e., every non-null marker in the A-
column is unique in the A-column (there can still be distinct rows which are both null on
A). If we also declare A to be NOT NULL and Σ is enforced by the database management
system, then A is even a candidate key. That is, for every table over Supplier every
row in that table has a total and unique value in the A-column.
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6.3.3 Sagiv, Delobel, Parker and Fagin’s class of FDs and MVDs over total
relations

The results for this class of data dependencies [21] are subsumed by our theory for the
special case where Rs = R. This is an important special case since there is a direct
equivalence to Boolean implication. In particular, Fagin’s special truth assignment [64]
applies to all the variables in S, i.e., the variables that correspond to attributes of R
declared NOT NULL.

6.3.4 Lien’s class of FDs and MVDs

Theorem 3 subsumes equivalences for Lien’s class of FDs and MVDs where no NFS Rs

is assumed to be given [23]. In fact, we obtain an equivalence to the LP implication of
the propositional fragment in Priest’s Logic of Paradox [80], which itself corresponds to
the special case S = ∅ in Cadoli and Schaerf’s family of S-3 logics [79]. The arguments
that result in Theorem 3 also show that if the given set of data dependencies consists of
FDs only, then we obtain an equivalence to the Horn fragment of these logics.

6.3.5 Atzeni and Morfuni’s class of FDs in the presence of an NFS

Finally, Theorem 3 subsumes equivalences for Atzeni and Morfuni’s class of FDs in the
presence of an arbitrary NFS Rs [25]. In this case, we obtain an equivalence to S-3
implication of propositional Horn formulae.

6.4 Equivalences to Boolean implication

For the special case where the set S is the full underlying set L of propositional variables
all variables are interpreted classically. If we want to emphasize the fact that we speak
about the implication of classical Boolean propositional logic we use |=BL to denote the
entailment relation |=3

L. Recall that by Corollary 5 we have that Σ |=Rs φ if and only if
Σ[lhs(φ)Rs] |=R φ. However, Σ[lhs(φ)Rs] |=R φ holds if and only if (Σ[lhs(φ)Rs])

′ |=BL

φ′ holds [21].

Corollary 7 Let Σ∪{φ} be a set of FDs and MVDs over the relation schema R, and let
Rs denote an NFS over R. Let L denote the set of propositional variables that corresponds
to R, and Σ′ ∪ {φ′} the set of L-formulae that corresponds to Σ ∪ {φ}. Then Σ |=Rs φ
if and only if (Σ[lhs(φ)Rs])

′ |=BL φ
′.

Example 10 Let R = ASLC denote the relation schema Supplies, Rs = ALC and let
Σ contain the FDs A→ S and AL→ C, and the MVD S � L. Let φ1 denote the MVD
A� L, and let φ2 denote the FD A→ C. The problems whether Σ implies φ1 and φ2 in
the presence of Rs are equivalent to the problems whether Σ[ALC] = {A→ S,AL→ C}
implies φ1 and φ2 over total relations, respectively. The following relation r

Article Supplier Location Cost
Kiwi G6Kiwi Gisborne 1.50
Kiwi G6Kiwi Wellington 2.50
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shows that Σ[ALC] implies neither φ1 nor φ2. For ω′
r we obtain ω′

r(V ) = T, if V ∈
{A′, S ′}, and ω′

r(V ) = F, if V ∈ {L′, C ′}. Indeed, ω′
r is a Boolean model of Σ[ALC]′ but

not a Boolean model of neither φ′
1 nor φ′

2.

6.5 Summary of equivalences

Finally, we will give a summary of the characterizations we have established for the
implication problem of functional and multivalued dependencies in the presence of a
null-free subschema.

Theorem 4 Let Σ∪{φ} be a set of FDs and MVDs over the relation schema R, and let
Rs denote an NFS over R. Let L denote the set of propositional variables that corresponds
to R, S the set of variables that corresponds to Rs, and Σ′ ∪ {φ′} the set of L-formulae
that corresponds to Σ ∪ {φ}. Then the following are equivalent:

1. Σ |=Rs φ

2. Σ |=2,Rs φ (Corollary 1)

3. Σ ⊢D φ (Theorem 2)

4. Σ[lhs(φ)Rs] |=R φ (Corollary 5)

5. Σ[lhs(φ)Rs] |=2,R φ [21]

6. (Σ[lhs(φ)Rs])
′ |=BL φ

′ [21]

7. Σ′ |=LPS φ
′ (Theorem 3)

8. Σ′ |=3
S φ

′ (Corollary 6).

7 Impact on other approaches

As pointed out in Section 2 there are several other approaches to handle incomplete
information. In this section, we demonstrate how slight adjustments to the notions in
the “no information” context result in the applicability of our results to Codd’s null
marker interpretation “value unknown at present” [65] under Levene and Loizou’s weak
possible world semantics [41]. We further demonstrate that the results do not apply
in this form to Imielinksi’s or-relations under Levene and Loizou’s weak possible world
semantics [68].

7.1 Value unknown at present

Codd’s original proposal [65] to handle incomplete information suggested the addition to
the database domains of a null marker unk, whose meaning is “value unknown at present”.
Following Codd’s proposal, incomplete information is represented in SQL by using unk as
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a distinguished null marker [17]. We will discuss in this section how the results from the
previous sections carry over to this approach towards handling incomplete information.

Levene and Loizou introduced and axiomatized strong and weak FDs (WFDs) with
respect to a possible world semantics [41]. We will start by summarizing their approach
towards defining WFDs. For this purpose, we assume that the domains of all attributes
contain the distinguished element unk (and no longer the distinguished element ni).
With this change in mind, we re-apply the definitions of an X-total tuple and relation as
before. The set of all possible worlds relative to a relation r over R, denoted by Poss(r),
is defined by

Poss(r) := {s | s is a relation over R and there is a total and onto mapping
f : r → s where ∀t ∈ r, t is subsumed by f(t) and f(t) is R-total}.

This definition of possible worlds embodies the closed world assumption (CWA) [66, 94],
since Poss(r) allows only R-total tuples from the relation r to be present in Poss(r).

A weak functional dependency (WFD) over a relation schema R is a statement of
the form ♢(X → Y ), where XY ⊆ R. A relation r over R is said to satisfy the WFD
♢(X → Y ) over R, if there is some s ∈ Poss(r) such that for all t1, t2 ∈ s, if t1[X] = t2[X],
then t1[Y ] = t2[Y ]. We note that the definition of satisfaction of a WFD in a relation
reduces to the standard definition of the satisfaction of an FD when the relation is R-
total (in this case there is exactly one s ∈ Poss(r) and ∀s ∈ Poss(r) is equivalent to
∃s ∈ Poss(r)). We observe that ♢ can be viewed as representing the modal operator
possibly of a normal system of propositional modal logic [95]. Finally we remark that the
weak approach to satisfaction of an FD by an incomplete relation allows a higher degree
of uncertainty to be represented in the database than the strong approach (where an
FD must be satisfied in all possible worlds) [41]. The disadvantage of the weak over the
strong approach is that strongly satisfied FDs are easier to maintain [41]. Hence, both
approaches complement one another.

It is known that WFDs in the absence of an NFS enjoy the same axiomatization as “no
information” FDs (NFDs) [25, 23]. However, WFDs are different from NFDs. First of all,
WFDs are defined with respect to Codd’s null marker unk. Under this interpretation we
know that a value exists, whereas under the “no information” interpretation it may also
be the case that no value exists at all. Moreover, WFDs and NFDs also behave differently.
For example, the relation r over R = ASL with the two tuples (Kiwi,G6Kiwi,Wellington)
and (Kiwi,unk,Gisborne) satisfies the WFD ♢(A → S). However, the NFD A → S is
violated by r = {(Kiwi,G6Kiwi,Wellington), (Kiwi, ni,Gisborne)}. That is, we have two
distinct tuples which have an information on the attribute A and the information is the
same, but the first tuple has some information for S while the second tuple has “no
information” for S.

In the context of NFDs we defined the weak agree set of two tuples as agw(t1, t2) =
{A ∈ R | t1(A) = ni = t2(A)}. For WFDs we re-define this to be agw(t1, t2) := {A ∈ R |
t1(A) = unk or t2(A) = unk}. Intuitively, this makes perfect sense in this context: two
tuples weakly agree on an attribute if there is a possible world on which they agree on
A. The definition of a strong agree set ags(t1, t2) := {A ∈ R | t1(A) = t2(A) and t1(A) ̸=
unk ̸= t2(A)} requires no adjustment apart from the notation of the null marker, and

33



ag(t1, t2) := ags(t1, t2)∪agw(t1, t2) as before. The next proposition, which gives a syntactic
characterization of satisfaction of a WFD, follows from the definition of satisfaction.

Proposition 2 Let XY ⊆ R and r be a relation over R. Then r satisfies ♢(X → Y ) if
and only if for all t1, t2 ∈ r, if X ⊆ ags(t1, t2), then Y ⊆ ag(t1, t2).

A weak multivalued dependency (WMVDs) over R is a statement ♢(X � Y ), where
XY ⊆ R. A relation r over R is said to satisfy the WMVD ♢(X � Y ) over R, if there
is some s ∈ Poss(r) such that for all t1, t2 ∈ s the following holds: if t1[X] = t2[X], then
there is some t ∈ s such that t[XY ] = t1[XY ] and t[X(R− Y )] = t2[X(R− Y )].

WMVDs behave quite differently from multivalued dependencies (NMVDs) in the
“no information” context. For example, the following relation r over R = ASLC:

Article Supplier Location Cost
Gold Kiwi G6Kiwi Wellington 1.50
Green Kiwi G6Kiwi Gisborne 2.50
Green Kiwi unk Wellington 2.50
Gold Kiwi unk Gisborne 1.50

satisfies the WMVD ♢(S � L). However, the “no information” MVD (NMVD) S � L
is violated by

Article Supplier Location Cost
Gold Kiwi G6Kiwi Wellington 1.50
Green Kiwi G6Kiwi Gisborne 2.50
Green Kiwi ni Wellington 2.50
Gold Kiwi ni Gisborne 1.50

.

For WMVDs, we can obtain the following syntactic characterization for their satis-
faction by an incomplete relation.

Proposition 3 Let XY ⊆ R and r be a relation over R. Then r satisfies ♢(X � Y )
if and only if for all t1, t2 ∈ r with X ⊆ ags(t1, t2) there is some t ∈ r such that
X ⊆ ags(t, t1), Y ⊆ ag(t, t1) and R− Y ⊆ ag(t, t2).

Let D′ denote the set of inference rules obtained from replacing the FDs and MVDs in
D by WFDs and WMVDs, respectively. Using Propositions 2 and 3 it is not difficult to
show that the inference rules of D′ are sound for the implication of WFDs and WMVDs
in the presence of an NFS. Following the same line of arguments as in Section 5 it can be
shown that the system D′ forms a finite axiomatization for the combined class of WFDs
and WMVDs in the presence of an NFS. In particular, the two-tuple relation rφ

X(X+
Σ ∩Rs) (X+

Σ −X)−Rs W1 ∩Rs W1 −Rs · · · Wi · · · Wk ∩Rs Wk −Rs

t1 0 · · · 0 unk · · · unk 0 · · · 0 unk · · · unk 0 · · · 0 0 · · · 0 unk · · · unk
t2 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 1 · · · 1 0 · · · 0 0 · · · 0
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shows that a WFD or WMVD φ is not implied by a set Σ of WFDs and WMVDs
whenever φ cannot be inferred from Σ by D′, cf. the proof of Theorem 2. A number of
further results follow, including the counter-part to Corollary 1. With the new definition
of weak agree sets, Theorem 3 and Corollary 6 carry over to sets of WFDs and WMVDs in
the presence of an NFS Rs and the families LPS and S-3, respectively, of para-consistent
logics. The special LP interpretation remains the same, in particular ω′

{t1,t2}(A
′) := P

whenever t1 and t2 weakly agree on A, i.e., when they agree (in a possible world of
{t1, t2}) on A and they disagree (in a possible world of {t1, t2}) on A. We summarize
these results as follows.

Proposition 4 Let Σ ∪ {φ} be a set of WFDs and WMVDs over the relation schema
R, and let Rs denote an NFS over R. Let L denote the set of propositional variables
that corresponds to R, S the set of variables that corresponds to Rs, and Σ′ ∪ {φ′} the
set of L-formulae that corresponds to Σ ∪ {φ}. Then the following are equivalent: (1)
Σ |=Rs φ, (2) Σ |=2,Rs φ, (3) Σ ⊢D′ φ, (4) Σ[lhs(φ)Rs] |=R φ, (5) Σ[lhs(φ)Rs] |=2,R φ,
(6) (Σ[lhs(φ)Rs])

′ |=BL φ
′, (7) Σ′ |=LPS φ

′, (8) Σ′ |=3
S φ

′.

Hence, our results also establish SQL’s NOT NULL constraint as an effective mechanism
to control the expressiveness and efficiency of consequence relations under Levene and
Loizou’s weak possible world semantics for Codd’s null marker unk.

7.2 Or-relations

In the case of the null marker unk an incomplete relation can have an infinite set of
possible worlds, assuming that attribute domains are countably infinite. Consequently,
each value in the domain is possible, or in other words, unk represents the disjunction of
all the possible domain values. This simple approach has the disadvantage of being too
vague in the case that we have some partial information. For example, let (Kiwi,unk)
denote a tuple over the schema R = AL. The occurrence of unk in this tuple implies
that we do not know from which location the article Kiwi is delivered. However, we
may know that the article will be delivered from either Wellington or Gisborne, and this
information could be represented as the finite set {Wellington, Gisborne} in the tuple
(Kiwi,{Wellington,Gisborne}). Assume that this tuple represents all the information we
have about the article Kiwi. Then this new tuple represents an increase of information:
we can answer the query “Is the article Kiwi delivered from Auckland?” with a no. On
the other hand, using the null marker unk we would have to answer the same query with
maybe.

We will now define the framework for or-relations [68]. A non-empty finite set
{v1, . . . , vm} of values, one of which is the true value, drawn from a given attribute
domain dom(A) is called an or -set over A. If m = 1, then the singleton or-set represents
a known value, and otherwise it represents a set of possible values where it is unknown
which value in the or-set is the true value. An or -tuple over R = {A1, . . . , An} is a
function t : R →

∪
A∈R

P0(dom(A)) such that for all A ∈ R, t(A) ∈ P0(dom(A)) holds,

where P0(dom(A)) denotes the set of all or-sets over A. For some subset X ⊆ R, we say
that t is X-total, if t(A) is a singleton or-set for all A ∈ X. An or -relation over R is a
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finite set of or-tuples. For some subset X ⊆ R, an or-relation r is said to be X-total,
if every t ∈ r is X-total. We say that an or-tuple t2 is subsumed by an or-tuple t1, if
for all A ∈ R, t1(A) ⊆ t2(A) holds. That is, having less values in an or-set represents
having more information. The set of all possible worlds relative to an or-relation r over
R, denoted by Poss(r), is defined by

Poss(r) := {s | s is an or-relation over R and there is a total and onto mapping
f : r → s where ∀t ∈ r, t is subsumed by f(t) and f(t) is R-total}.

An or-free subschema Rs of R with Rs ⊆ R is satisfied by an or-relation r, if r is Rs-total.
A weak functional dependency (WFD) over R is a statement ♢(X → Y ) where XY ⊆ R.
An or-relation r over R satisfies the WFD ♢(X → Y ) over R, if there is some s ∈ Poss(r)
such that for all t1, t2 ∈ s the following holds: if t1[X] = t2[X], then t1[Y ] = t2[Y ]. The
behavior of WFDs in the context of or-relations is quite different from that of NFDs in
the “no information” context and WFDs in the “value unknown at present” context. For
example, the following or-relation r

Article Location Cost
Gold Kiwi Wellington 1.50

{Gold Kiwi, Green Kiwi} Wellington 2.50
{Gold Kiwi, Green Kiwi} Gisborne 2.50

satisfies the WFDs ♢(A → L) and ♢(A → C), but it violates the WFD ♢(A → LC).
Consequently, the union rule UF is not sound for the implication of weak functional
dependencies over or-relations.

A weak multivalued dependency (WMVDs) over R is a statement ♢(X � Y ), where
XY ⊆ R. An or-relation r over R is said to satisfy the WMVD ♢(X � Y ) over R, if
there is some s ∈ Poss(r) such that for all t1, t2 ∈ s the following holds: if t1[X] = t2[X],
then there is some t ∈ s such that t[XY ] = t1[XY ] and t[X(R− Y )] = t2[X(R− Y )].

The behavior of WMVDs in the context of or-relations is different from that of
NMVDs in the “no information” context and WMVDs in the “value unknown at present”
context. For example, the following or-relation r

Article Supplier Location
Kiwi G6Kiwi {Wellington, Gisborne}
Kiwi Kiwifruitz {Maunganui, Auckland}
Kiwi G6Kiwi {Maunganui, Gisborne}
Kiwi Kiwifruitz {Wellington, Auckland}

satisfies the NFS Rs = AS and the WMVDs ♢(A � S) and ♢(S � L), but it violates
the WMVD ♢(A � L). Consequently, the null pseudo-transitivity rule TM is not sound
for the implication of weak multivalued dependencies over or-relations. Note that the
same relation also satisfies the WFD ♢(S → L), i.e., it shows that the null mixed pseudo-
transitivity rule TFM is not sound for the implication of weak functional and multivalued
dependencies over or-relations.
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A further significant difference of or-relations to incomplete relations is the following
fact. For the or-relation r

Article Location
Kiwi {Wellington,Gisborne}
Kiwi {Gisborne,Auckland}
Kiwi {Wellington,Auckland}

over R = AL there is no possible world that satisfies the WFD ♢(A→ L), but for every
two-tuple subrelation of r there is a possible world that satisfies ♢(A→ L). Hence, over
or-relations it is not true that for every set Σ∪{φ} of WFDs and WMVDs with a relation
r that satisfies Σ and violates φ there is a two-tuple subrelation of r that satisfies Σ and
violates φ. The example above shows that this result already fails in the case where Σ is
empty and φ is a WFD.

The examples above illustrate that the same classes of data dependencies behave
quite differently over relations that allow arbitrary disjunctions of domain values than
over relations where only finite disjunctions of domain values are allowed to occur. This
also warrants future research on the implication problem of classes of data dependencies
over or-relations.

8 Applications

In this section we illustrate the potential impact of our results on three major data
processing tasks: updates, queries and access control.

8.1 Efficient processing of updates

As a first major application we illustrate how the choice of a null-free subschema im-
pacts on the properties of decompositions that are derived from an extension of standard
normalization algorithms [3, 96].

We say that a relation schema R is in 4NF with respect to a set Σ of FDs and
MVDs in the presence of an NFS Rs, cf. [20], if for every MVD X � Y ∈ Σ+

D where
X ̸= XY ̸= R it follows that X → R ∈ Σ+

D, too. As in the special case where Rs = R
the syntactic condition for being in 4NF can be semantically justified by the absence of
suitable notions of data redundancy and update anomalies [8]. The exact definitions and
the proofs of these results, however, are beyond the scope of this article. We conclude
that it is a desirable goal for a database designer to obtain a database schema in which
every relation schema is in 4NF with respect to the given FDs and MVDs in the presence
of an NFS. In fact, this condition guarantees that updates on every future database
instance can be efficiently processed.

We will analyze how the choice of a null-free subschema Rs impacts on the properties
of being lossless and dependency-preserving for database decompositions. We define
the set {(R1, R

1
s), . . . , (Rn, R

n
s )} with Ri

s ⊆ Ri for all i = 1, . . . , n to be a lossless join
decomposition of R with respect to Σ and Rs, if R =

∪n
i=1Ri and every relation r over
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ASL A       CΣ

AS A       C,Σ AL      C

sR  = ASL : both lossless and dependency−preserving

sR  = S : not lossless, not dependency−preserving

sR  = AS : lossless, not dependency−preserving sR  = SL : not lossless, dependency−preserving

lost A       CΣ SL

Figure 3: Properties of decompositions with respect to the choice of a null-free subschema

R that satisfies Σ and Rs also satisfies the following conditions: r = r[R1] ◃▹ · · · ◃▹ r[Rn]
and for i = 1, . . . , n, r[Ri] is R

i
s-total. We define the set {(R1, R

1
s), . . . , (Rn, R

n
s )} with

Ri
s ⊆ Ri for all i = 1, . . . , n to be a lossless 4NF decomposition of R with respect to Σ

and Rs, if {(R1, R
1
s), . . . , (Rn, R

n
s )} is a lossless join decomposition of R with respect to

Σ and Rs, and for all i = 1, . . . , n, Ri is in 4NF with respect to

Σ+
D[Ri, R

i
s] = {X → Y ∈ Σ+

D | XY ⊆ Ri} ∪ {X � Y ∩Ri ∈ Σ+
D | X ⊆ Ri}

and Ri
s. Moreover, the set {(R1, R

1
s), . . . , (Rn, R

n
s )} with Ri

s ⊆ Ri for all i = 1, . . . , n is
a dependency-preserving decomposition of R with respect to Σ and Rs, if for every set
{r1, . . . , rn} of relations such that for all i = 1, . . . , n, ri is an Ri

s-total relation over Ri

that satisfies Σ+
D[Ri, R

i
s], there is some Rs-total relation r over R that satisfies Σ and for

which ri = r[Ri] for all i = 1, . . . , n.
Consider now our running example where R = ASLC and Σ = {A → S,AL →

C, S � L}. Following a 4NF-decomposition strategy one may decompose R based on
the MVD S � L into R1 = SL and ASC, and then decompose ASC based on the FD
A→ S into R2 = AS and R3 = AC.

Consider four different choices for the null-free subschema Rs and its natural propa-
gation Ri

s := Ri ∩ Rs to the elements Ri of our decomposition. First, let Rs = S. Then
{(R1, S), (R2, S), (R3, ∅)} is neither lossless nor dependency-preserving with respect to
Σ and Rs. For Rs = SL, {(R1, SL), (R2, S), (R3, ∅)} is not lossless, but dependency-
preserving. In fact, Σ |=Rs A → C. For Rs = AS, the set {(R1, S), (R2, AS), (R3, A)} is
lossless, but not dependency-preserving. Recall that if a relation r satisfies an FD or MVD
with left-hand side X and right-hand side Y , then rX [R] = rX [XY ] ◃▹ rX [X(R − Y )].
Since we decomposed based on S � L and A → C, including A and S into Rs ensures
losslessness. Finally, for Rs = ALS the set {(R1, SL), (R2, AS), (R3, A)} is a lossless and
dependency-preserving 4NF decomposition of R with respect to Σ and Rs. The situation
is illustrated in Figure 3. Hence, our results empower database designers to determine
effectively the properties of decompositions.

38



8.2 Efficient processing of queries

Besides updates, the efficient processing of database queries is one of the most significant
tasks of a database management system. We will now illustrate by example how the
ability to decide efficiently the implication problem for sets of FDs and MVDs in the
presence of an NFS can result in effective optimizations of database queries. Basically,
new opportunities for query optimization arise whenever certain data dependencies are
proven to be implied by a given set of data dependencies in the presence of a given
NFS. Recall that the NFS has a significant impact on the decision whether a given data
dependency is implied or not.

Consider again our running example where R = ASLC, Rs = SL, and Σ = {A →
S,AL→ C, S � L}. Consider first the query that retrieves all combinations of locations
and costs associated with the same article. A naive implementation of this query would
be

SELECT R.L, R′.C
FROM R, R AS R′

WHERE R.A = R′.A
.

However, since Σ |=Rs A → C the cost of the article is the same for every location the
article is delivered from. Consequently, the query can be rewritten into

SELECT R.L, R.C FROM R

which requires no join at all.
Another opportunity for optimizing queries is the identification of superfluous DISTINCT

clauses. The gains in efficiency can be significant since duplicate elimination often re-
quires an expensive sort of the query result [97]. For a detailed discussion how the
detection of superfluous DISTINCT clauses can be used by database management sys-
tems we refer the interested reader to [98]. Essentially, our tools for reasoning about
data dependencies over SQL table definitions enable database management systems to
decide efficiently whether the attributes selected for a query output permit occurrences
of duplicates. As an illustration consider Example 9 again, where Supplier = ASLC,
SupplierS = SLC and Σ = {A → S,AL → C,AC → L, S � L}. Consider now the
query where we retrieve all distinct articles from the Article-column of Supplier that
are not null. A naive implementation of this query would be

SELECT DISTINCT Supplier.A
FROM Supplier
WHERE Supplier.A NOT NULL

.

However, since Σ implies the FD A→ SLC in the presence of SupplierS , the DISTINCT
clause is superfluous. Hence, the results we develop in this article can help to identify
automatically superfluous DISTINCT clauses.

8.3 Inference control

Inference control is a security mechanism developed to ensure confidentiality in databases
[31, 99, 100]. The objective is to avoid inferences of secrets by users based on their query
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history and their knowledge about the database. Consider again our running example
where R = ASLC, Rs = SL, and Σ = {A→ S,AL→ C, S � L}. Suppose the fact that
there is a supplier that delivers Kiwis from the location Wellington for the cost of 2NZD
is a business secret that some users of that database are not supposed to learn. That is,
the fact that the sentence Ψ

∃XSR(Kiwi, XS,Wellington, 2NZD)

is true in the database must not be revealed to unauthorized users. Nevertheless, a user
may issue the queries:

• Φ1 = (∃XS)(∃XL)R(Kiwi, XS, XL, 2NZD) and

• Φ2 = (∃XS)(∃XC)R(Kiwi, XS,Wellington, XC)

and learn that both queries are true in the current instance, since neither Φ1 nor Φ2

individually reveal Ψ. Unfortunately, this form of access control does not guarantee
confidentiality since an attacker can exploit the fact that Σ |=SL A � L holds. An
application of the MVD A � L to the two tuples Φ1 and Φ2 reveals to the attacker
that the potential secret Ψ is also an element of the database instance. Hence, clever
attackers can utilize their background knowledge to bypass access control policies. Note
that attackers are unable to draw the conclusion that Ψ is an element of the database
instance if S /∈ Rs. As a consequence, the tools developed in this article result in
an advanced understanding of entailment relations that can assist security officers in
preventing inference attacks on future database instances.

9 Conclusion

Previous theories and database practice warrant a thorough study of FDs and MVDs in
the presence of an NFS. We established a finite axiomatization and efficient algorithms
to decide the associated implication problem. These close the gap between theory and
practice, and unify previously orthogonal theories for i) FDs and MVDs over total re-
lations, ii) FDs in the presence of an NFS, and iii) FDs and MVDs in the absence of
an NFS. For Lien, Atzeni and Morfuni’s class of FDs and MVDs we established corre-
spondences between their implication and the implication of fragments in Priest’s Logic
of Paradox. More generally, we established equivalences between the implication of FDs
and MVDs in the presence of an arbitrary NFS and the implication of fragments of
Cadoli and Schaerf’s S-3 logics. We also established the equivalence of the implication
problem of this class to that of a reduced set of FDs and MVDs over total relations and,
therefore, to that of a propositional fragment in Boolean logic by previous results from
Sagiv, Delobel, Parker and Fagin. This enables the use of Galil’s almost linear time algo-
rithm to decide the implication problem for this class of data dependencies and that of
its corresponding S-3 fragment. In the electronic appendix, we extend our equivalences
to the combined class of FDs and full first-order hierarchical decompositions, and the
class of Boolean dependencies. Our findings apply to Zaniolo’s “no information” nulls
and to Codd’s “value unknown at present”, but not to Imielinksi’s or-relations under
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Levene and Loizou’s weak possible world semantics. Our theory establishes SQL’s NOT
NULL constraint as an effective mechanism to balance the expressiveness and efficiency
of entailment relations for significant classes of uni-relational dependencies that arise in
practice. It also explains how Boolean entailment is soundly approximated by SQL table
definitions.

10 Future directions

There are at least three directions to pursue in future work. Firstly, one may analyze other
classes of data dependencies. A prime example are inclusion dependencies [101, 102].
Particularly interesting would be to study the impact of null-free subschemata on the
interaction of functional and inclusion dependencies. It is also an open problem if the
combined classes of strong and weak, functional and multivalued dependencies can be
axiomatized [41]. Secondly, one should consider other approaches to incomplete infor-
mation, including other interpretations of null markers [103, 77, 74, 75, 76], or-relations
[68], fuzzy [72], rough sets [73], or world-set decompositions to manage probabilistic in-
formation [104]. Thirdly, a main observation for the application areas of Section 8 is that
most of the existing theory does not apply to SQL tables. These areas include normal-
ization [3, 27, 8], semantic query optimization [32], consistent query answering [46] and
controlled query evaluation [10]. Permitting subsumption in database relations means
that the class of functional and multivalued dependencies does no longer subsume the
class of uniqueness constraints. It is therefore interesting to study the combined class
of uniqueness constraints, functional and multivalued dependencies in the presence of an
NFS. Results on the implication problem for the combined class of uniqueness constraints
and FDs in the presence of an NFS, and normal forms that characterize the absence of
data redundancy in relations that permit subsumption have been reported [105].

We plan to extend current design aids available for total relations [89, 106, 107, 29,
108]. Intuitively, design teams find it more difficult to understand the interaction of FDs
and MVDs in the presence of an arbitrary NFS. Hence, Armstrong databases [109] may
be of even greater value than for the special case of total relations [110]. It is therefore
desirable to extend the results about Armstrong relations from the class of FDs in the
presence of an NFS [111] to the combined class of FDs and MVDs in the presence of an
NFS.

Other directions include the problems of dependency inference [30], data cleaning
[12], and extremal problems [112, 113, 114] in the presence of null markers.

Our equivalences pave the way to develop a preference-based theory of dependencies
where the administrator ranks sets of dependencies according to some preferences re-
garding the urgency of their enforcement or their relevance for query optimization, for
example. As a starting point one may apply the para-consistent entailment relations of
logical frameworks [115].

Bayesian networks provide a semantic modeling tool which facilitates the acquisition
of probabilistic knowledge [116]. Here, Bayesian multivalued dependencies allow us to
decompose a joint probability distribution into two of its marginalizations without the loss
of information. Consequently, the probability of an event can be obtained, in principle, by
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appropriate marginalizations of the joint probability distribution. It would be interesting
to study the impact of our results on the relationships between dependencies over total
relations and Bayesian dependencies over total probability distributions [116, 117, 118].

Multivalued dependencies have largely been unexplored for XML, except for [119,
120]. This is surprising as the body of research on functional dependencies over XML data
is substantial, and multivalued dependencies aim to explore the lossless decompositions
of documents in which they are exhibited.

Finally, one may study data exchange problems in the presence of inconsistent sets
of source, target or source-to-target dependencies [14]. While inconsistencies may easily
arise in practice, it is not clear how to deal with them in general, and what a reasonable
solution to a data exchange problem constitutes in particular.
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[29] Mannila, H., Räihä, K.J.: Design by example: An application of Armstrong rela-
tions. J. Comput. System Sci. 33(2) (1986) 126–141
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[105] Ferrarotti, F., Hartmann, S., Köhler, H., Link, S., Vincent, M.: The Boyce-Codd-
Heath normal form for SQL. In: Proceedings of the Eighteenth International Work-
shop on Logic, Language, Information and Computation (WoLLIC). Volume 6642
of Lecture Notes in Artificial Intelligence., Philadelphia, U.S.A., Springer (2011)
110–122

[106] De Marchi, F., Lopes, S., Petit, J.M., Toumani, F.: Analysis of existing databases
at the logical level: the DBA companion project. SIGMOD Record 32(1) (2003)
47–52

[107] De Marchi, F., Petit, J.M.: Semantic sampling of existing databases through
informative Armstrong databases. Inf. Syst. 32(3) (2007) 446–457

[108] Silva, A., Melkanoff, M.: A method for helping discover the dependencies of a
relation. In: Proceedings of the Workshop on Formal Bases for Data Bases -
Advances in Data Base Theory, Toulouse, France, Plemum Press (December 12-14
1979) 115–133

[109] Fagin, R.: Armstrong databases. Technical Report RJ3440(40926), IBM Research
Laboratory, San Jose, California, USA (1982)

[110] Langeveldt, W., Link, S.: Empirical evidence for the usefulness of Armstrong
relations on the acquisition of meaningful functional dependencies. Inf. Syst. 35(3)
(2010) 352–374

[111] Hartmann, S., Kirchberg, M., Link, S.: Design by example for SQL table definitions
with functional dependencies. VLDB J. 21(1) (2012) 121–144

[112] Demetrovics, J., Katona, G., Miklos, D., Thalheim, B.: On the number of indepen-
dent functional dependencies. In: Proceedings of the Fourth International Sympo-
sium on Foundations of Information and Knowledge Bases (FoIKS). Number 3861
in Lecture Notes in Computer Science, Budapest, Hungary, Springer (February
14-17 2006) 83–91

[113] Engel, K.: Sperner theory. Cambridge Univ. Press, Cambridge, UK (1997)

[114] Hartmann, S., Leck, U., Link, S.: On Codd families of keys over incomplete
relations. Comput. J. 54(7) (2011) 1166–1180

49



[115] Marquis, P., Porquet, N.: Resource-bounded paraconsistent inference. Ann. Math.
Artif. Intell. 39 (2003) 349–384

[116] Wong, S., Butz, C., Wu, D.: On the implication problem for probabilistic condi-
tional independency. Trans. Systems, Man, and Cybernetics, Part A: Systems and
Humans 30(6) (2000) 785–805

[117] Malvestuto, F.: A unique formal system for binary decompositions of database
relations, probability distributions, and graphs. Inf. Sci. 59(1-2) (1992) 21–52

[118] Niepert, M., Van Gucht, D., Gyssens, M.: Logical and algorithmic properties of
stable conditional independence. Int. J. Approx. Reasoning 51(5) (2010) 531–543

[119] Saxton, L., Tang, X.: Tree multivalued dependencies for XML datasets. In: Pro-
ceedings of the Fifth International Conference on Advances in Web-Age Informa-
tion Management (WAIM). Volume 3129 of Lecture Notes in Computer Science.,
Dalian, China, Springer (July 15-17 2004) 357–367

[120] Vincent, M., Liu, J.: Multivalued dependencies and a 4NF for XML. In: Pro-
ceedings of the 15th International Conference on Advanced Information Systems
Engineering (CaISE). Volume 2681 of Lecture Notes in Computer Science., Kla-
genfurt, Austria, Springer (June 16-18 2003) 14–29

[121] Biskup, J.: On the complementation rule for multivalued dependencies. Acta Inf.
10 (1978) 297–305

[122] Zaniolo, C.: Mixed transitivity for functional and multivalued dependencies in
database relations. Inf. Process. Lett. 10(1) (1980) 32–34

[123] Khardon, R., Mannila, H., Roth, D.: Reasoning with examples: propositional
formulae and database dependencies. Acta Inf. 36 (1999) 267–286

[124] Sagiv, Y., Delobel, C., Parker Jr., D.S., Fagin, R.: Correction to ”An equivalence
between relational database dependencies and a fragment of propositional logic”.
J. ACM 34(4) (1987) 1016–1018

[125] Vardi, M.: The complexity of relational query languages. In: Proceedings of the
Fourteenth ACM Symposium on Theory of Computing (STOC), San Francisco,
USA, ACM (1982) 137–146

50



Table 4: Axiomatization S1 for FDs & MVDs in the special case Rs = R

XY → Y

X → Y

XU → Y V
V ⊆ U

(reflexivity, RF) (FD augmentation, AF)

X → Y Y → Z

X → Z
(transitivity, T ′

F)

X � Y

X � R− Y

X � Y

XU � Y V
V ⊆ U

(R-complementation, CR
M) (MVD augmentation, AM)

X � Y Y � Z

X � Z − Y
(pseudo-transitivity, T ′

M)

X → Y

X � Y

X � Y Y → Z

X → Z − Y
(implication, IFM) (mixed pseudo-transitivity, T ′

FM)

12 Appendix

In the appendix we establish i) how our new axiomatization subsumes three previous
axiomatizations as special cases, ii) that every counter-example relation for an instance
of the implication problem for FDs and MVDs in the presence of an NFS contains a two-
tuple subrelation that is a counter-example for the same instance, and iii) equivalences
for full first-order hierarchical decompositions and Boolean dependencies. In particular,
we exemplify how findings on the implication problem can be transferred between the
logical and data dependency frameworks.

13 Subsumption of previous axiomatizations

We demonstrate in this section how the reduction of D to the previously studied special
cases i) Rs = R, ii) Rs = ∅ and iii) Σ ∪ {φ} an FD set, subsumes the axiomatizations
established for these cases [25, 19, 23], respectively.

13.1 Total relations

For this special case where Rs = R, Beeri, Fagin and Howard established the first axioma-
tization of FDs and MVDs [19]. The setS1 from Table 4 forms an axiomatization for FDs
and MVDs in the case Rs = R [3, 27]. Biskup introduced the R-complementation rule CR

M
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in this particular form [121] and Zaniolo [122] introduced the mixed pseudo-transitivity
rule T ′

FM.
In the special case Rs = R, the null mixed pseudo-transitivity rule TFM reduces to

the rule T 1
FM:

X �W Y → Z

X → Z −W
Y ⊆ XW .

This rule subsumes Zaniolo’s mixed pseudo-transitivity rule T ′
FM for the special case where

W = Y . In fact, the following inference shows that in the special case where Rs = R the
mixed pseudo-transitivity rule T ′

FM can replace the null mixed pseudo-transitivity rule
T 1
FM in D without losing completeness (for the application of T ′

FM note that Y ⊆ XW
and hence also Z −XWY = Z −XW ):

RF : X → X RF : XW → Y
Y⊆XW

IFM : X � X X �W IFM : XW � Y Y → Z

UM : X � XW T ′
FM : XW → Z − Y

T ′
FM : X → Z −XW RF : X → (X −W ) ∩ Z

UF : X → Z −W

.

Similar observations hold for the null pseudo-transitivity rule TM and its counter-part, the
pseudo-transitivity rule T ′

M in the special case of total relations. The following inference
γ shows how the augmentation rule AF can be derived from the system D in the special
case where Rs = R:

XU → X
IFM : XU � X X → Y

RF : XU → X ∩ Y T 1
FM : XU → Y −X

UF : XU → Y RF : XU → V
V⊆U

UF : XU → Y V

.

A similar observation holds for the augmentation rule AM. Finally, the transitivity rule
T ′
F can also be inferred from the system D in the special case where Rs = R:

X → Y
X → Y IFM : X � Y Y → Z

DF : X → Y ∩ Z T 1
FM : X → Z − Y

UF : X → Z

.

Hence, the axiomatization S1 is already subsumed by the axiomatization D in the special
case where Rs = R.

13.2 Lien’s class of FDs and MVDs

This is the special case where Rs = ∅. Lien established the following set

S2 = {RF,AF,DF,UF, CR
M,AM,UM, IFM}
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as an axiomatization for the class of FDs and MVDs [23] in this case. Consequently, the
interaction of FDs and MVDs is relatively trivial when Rs = ∅. For example, the null
mixed pseudo-transitivity rule TFM reduces to the rule T 2

FM:

X �W Y → Z

X → Z −W
Y ⊆ X .

Replacing the application of T 1
FM in the inference γ above by that of T 2

FM shows how
the augmentation rule AF can be derived from the system D in the special case where
Rs = ∅. Similar observations hold for the null pseudo-transitivity rule, its counter-part:

X � W Y � Z

X � Z − Y
Y ⊆ X

in the case Rs = ∅, and the augmentation rule AM. Hence, the axiomatization S2 is
already subsumed by the axiomatization D in the special case where Rs = ∅.

13.3 Atzeni and Morfuni’s class of FDs in the presence of an
NFS

Atzeni and Morfuni established the following set

S3 = {RF,AF,DF, TF}

of inference rules as an axiomatization for the class of FDs in the presence of an NFS Rs

[25]. Here, TF denotes the null transitivity rule:

X → Y Y → Z

X → Z
Y −X ⊆ Rs .

This rule, however, can be derived from the system D as follows:

X → Y
X → Y IFM : X � Y Y → Z

DF : X → Y ∩ Z TFM : X → Z − Y
Y⊆X(Y ∩Rs)

UF : X → Z

Note that Y − X ⊆ Rs implies that Y ⊆ X(Y ∩ Rs). Hence, the axiomatization S3

is already subsumed by the axiomatization D in the special case where Σ contains only
FDs.

14 A model-theoretical result

For a set Σ∪ {φ} of FDs and MVDs over any relation schema R we show in this section
that any relation r that satisfies Σ and violates φ there is a two-tuple subrelation r′ ⊆ r
that satisfies Σ and violates φ. This extends a result from total [21] to partial relations.

For a two-tuple relation r = {t1, t2} over relation schema R we say that r actively
satisfies the MVD X � Y over R if r satisfies X � Y , t1 and t2 are X-total and
t1[X] = t2[X].

53



Lemma 6 Let r = {t1, t2} be a two-tuple relation over relation schema R. Let X � Y
be an MVD over R such that R is the disjoint union of X, Y and Z. Then r actively
satisfies X � Y if and only if i) X ⊆ ags(t1, t2), and ii) Y ⊆ ag(t1, t2) or Z ⊆ ag(t1, t2).

Proof If both i) and ii) hold, then r actively satisfies X � Y . Suppose that r = {t1, t2}
actively satisfies X � Y . Consequently, i) holds. Hence, t1[X] = t2[X] and t1, t2 are
X-total. Then there must be some t ∈ r such that t[XY ] = t1[XY ] and t[XZ] =
t2[XZ]. However, t = t1 or t = t2. Consequently, t1[XZ] = t2[XZ] or t1[XY ] = t2[XY ],
respectively. That is, Y ⊆ ag(t1, t2) or Z ⊆ ag(t1, t2).

Lemma 7 Let r = {t1, t2} and r′ = {t′1, t′2} both be two-tuple relations over relation
schema R such that ags(t1, t2) ⊆ ags(t′1, t

′
2) and ag(t1, t2) ⊆ ag(t′1, t

′
2). Then every MVD

φ over R that is actively satisfied by r is also actively satisfied by r′.

Proof Let r actively satisfy the MVD X � Y over R. Then we know that X ⊆
ags(t1, t2). We conclude that X ⊆ ags(t′1, t

′
2) since ag

s(t1, t2) ⊆ ags(t′1, t
′
2).

From Lemma 6 we also conclude that Y ⊆ ag(t1, t2) or R − XY ⊆ ag(t1, t2). Since
ag(t1, t2) ⊆ ag(t′1, t

′
2) we conclude that Y ⊆ ag(t′1, t

′
2) or R−XY ⊆ ag(t′1, t

′
2).

Hence, Lemma 6 tells us that r′ also actively satisfies X � Y .

Lemma 8 Let Σ ∪ {φ} be a set of FDs and MVDs over the relation schema R, and let
r be some relation over R. Assume that r satisfies Σ and violates φ. Then there is a
two-tuple subrelation r′ ⊆ r such that r′ satisfies Σ and violates φ.

Proof We distinguish between two cases, depending on whether φ is an FD or an MVD.
Case 1. Let φ denote an FD. We can assume without loss of generality that φ denotes

the FD X → A in which the right-hand side contains a single attribute. Since r violates
X → A there are two X-total tuples t1 and t2 of r that agree on the attributes in X but
disagree on the attribute A. Consider all two-tuple subrelations of r in which X → A is
violated. Of all such two-tuple subrelations of r, let r′ be the one which satisfies actively
the maximal number of MVDs. That is, if s is another two-tuple subrelation of r which
violates φ, and if k is the number of MVDs that are satisfied actively by s, then r′ satisfies
actively at least k MVDs. We shall now show that r′ satisfies Σ.

All FDs in Σ are satisfied by r′ since they are satisfied by r, and hence in every
subrelation of r including r′. Let U � V be an MVD in Σ that is violated by r′. We
shall derive a contradiction. Assume without loss of generality that U, V and W form a
partition of the relation schema R. The two tuples of r′ are clearly U -total and agree
on all attributes of U (otherwise r′ would satisfy U � V ). Let (u, v, w) and (u, v′, w′)
denote the two tuples in r′. Consequently, v ̸= v′ and w ̸= w′ (or else r′ would satisfy
U � V ). By assumption, r′ violates X → A. Thus, the two tuples are X-total and agree
on all the attributes in X and disagree on the attribute A. Since they disagree on A, we
have either A ∈ V or A ∈ W . Assume without loss of generality that A ∈ V . Let s be
the two-tuple relation containing (u, v, w) and (u, v′, w). Since r satisfies U � V , and
since (u, v, w) and (u, v′, w′) are in r, the tuple (u, v′, w) is necessarily in r. Hence, s is
a two-tuple subrelation of r. The two tuples of s are X-total and agree on all attributes
in X (since the two tuples in r′ do) but disagree on A (because v and v′ disagree on A).
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Thus, s violates X → A, and, unlike the situation in r′, we see that s actively satisfies
U � V . Furthermore, by Lemma 7 every MVD that is actively satisfied by r′ is also
actively satisfied by s. So more members of Σ are actively satisfied by s than by r′. Since
s is a two-tuple subrelation of r which violates X → A, this is a contradiction of the
“maximality” in the definition of r′. This completes the proof of case 1.

Case 2. Let φ denote the MVD X � Y . Assume without loss of generality that X,
Y and Z form a partition of the relation schema R. We say that a pair of tuples (x, y, z)
and (x, y′, z′) witness the failure of X � Y in a given relation if they appear in that
relation, if they are X-total and if one of (x, y′, z) or (x, y, z′) does not appear in that
relation. Thus an MVD fails in a relation if and only if the relation has a pair of tuples
that witness the failure. In particular, since r violates the MVD X � Y , let (x, y, z) and
(x, y′, z′) witness the failure of X � Y in r. Hence, (x, y′, z) or (x, y, z′) does not appear
in r. Of all two-tuple subrelations of r that witness the failure of X � Y in r, let r′ be
the one which actively satisfies the maximal number of MVDs in Σ. We now show that
r′ satisfies Σ (which completes the proof, since r′ violates X � Y ).

As in case 1, each FD in Σ is satisfied by r′. Let U � V be an MVD in Σ that is
violated by r′; we shall derive a contradiction. Assume that U , V andW form a partition
of the relation schema R. As in case 1, the two tuples of r′ are U -total and agree on all
the attributes in U .

Denote by V and W those attributes in V and W , respectively, for which the tuples
of r′ disagree. Since U � V is violated by r′, V and W are both necessarily non-empty.
We rewrite (x, y, z) and (x, y′, z′) as (u, v, w) and (u, v′, w′), respectively. Let s1 be the
two-tuple relation consisting of (u, v, w) and (u, v′, w), and let s2 be the two-tuple relation
consisting of (u, v, w) and (u, v, w′). Both s1 and s2 are subrelations of r since U � V
is satisfied by r. They are two-tuple relations since v ̸= v′ and w ̸= w′. By Lemma 7
every MVD of Σ that is actively satisfied by r′ is also actively satisfied by s1 and by s2.
Clearly U � V is actively satisfied by s1 and s2. If X � Y is violated by s1 or by s2, we
have derived a contradiction to the maximality of r′, and hence the proof is complete.
So suppose that X � Y is satisfied by both s1 and s2. Then X � Y is actively satisfied
by s1 and by s2 since all of the tuples in r′, s1 and s2 are X-total and have the same
X-value x. It follows from Lemma 6 that the two tuples in s1 agree on all attributes in
Y or on all attributes in Z. In the former case V ⊆ Z, since V contains all the attributes
in which the two tuples in s1 disagree. In the latter case V ⊆ Y . Thus we know that
V ⊆ Y or V ⊆ Z. Similarly, it follows from our knowledge of s2 that W ⊆ Y or W ⊆ Z.
Since V ⊆ Y or V ⊆ Z, and since W ⊆ Y or W ⊆ Z, there are four possibilities:

1. V ⊆ Y and W ⊆ Y ;

2. V ⊆ Y and W ⊆ Z;

3. V ⊆ Z and W ⊆ Y ;

4. V ⊆ Z and W ⊆ Z.

Now V ∪W contains all the attributes on which the two tuples of r′ disagree. If (1) were
to hold, then the two tuples in r′ would agree on all the attributes in Z, and hence the
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MVD X � Y would be satisfied by r′ (which it is not). Similarly, (4) is impossible. So
we have that (2) or (3) holds. We assume without loss of generality that (2) holds. Hence
y and y′ disagree exactly on all the attributes in V , and z and z′ disagree exactly on all
the attributes in W . Under these conditions (x, y′, z) and (u, v′, w) are identical, and so
are (x, y, z′) and (u, v, w′). But this is impossible, since (u, v′, w) and (u, v, w′) are in r,
whereas (x, y′, z) or (x, y, z′) is not in r.

15 Further equivalences

In this section we will demonstrate how our techniques can be applied to establish further
equivalences. It is known from the case of total relations that the equivalences to Boolean
implication do not extend to embedded or join dependencies. We demonstrate that our
equivalences do extend to Delobel’s class of full first-order hierarchical decompositions
[81] in the presence of an NFS. We will then utilize the special LP interpretation to
introduce the class of Boolean dependencies over incomplete relations, and to extend the
equivalence between FDs in the presence of an NFS and the Horn fragment of S-3 logics
to arbitrary Boolean dependencies in the presence of an NFS and propositional formulae
in S-3 logics. As an application of this equivalence the upper time bounds on the time-
complexity of the implication problem, previously established for S-3 logics, transfer
directly to the framework of Boolean dependencies. For the special case of an empty
NFS, we obtain a detailed analysis of the data, expression and combined complexity
from the findings for the Logic of Paradox. Vice versa, our axiomatization and upper
time bounds for the implication of FDs and MVDs in the presence of an NFS apply
directly to the S-3 implication of the propositional fragment. Next we establish a logical
characterization for the notions of a dependency basis and attribute set closure. Finally,
we characterize the implication problem for Boolean dependencies in the presence of an
arbitrary NFS by the implication problem for Boolean dependencies in the absence of an
NFS.

15.1 Extension to Delobel’s Full First-Order Hierarchical De-
compositions

It is known that, already for the special case of total relations, the equivalences of The-
orem 3 do not extend to join or embedded dependencies [21]. Delobel introduced the
class of full first-order hierarchical decompositions (FOHDs) as an important subclass of
join dependencies [81]. We will now extend the class of FOHDs to the context of the “no
information” null marker, and show under which translation to propositional formulae
the equivalences of Theorem 3 apply to the class of FOHDs.

An FOHD over a relation schemaR is an expressionX : {Y1, . . . , Yk} whereX,Y1, . . . , Yk
are all subsets of R such that XY1 · · ·Yk = R. We assume without loss of generality
that the attribute sets X,Y1, . . . , Yk are mutually disjoint and that k ≥ 2. The FOHD
X : {Y1, . . . , Yk} over R is satisfied by a relation r over R if and only if rX [R] = rX [XY1] ◃▹
· · · ◃▹ rX [XYk]. An MVD X � Y is satisfied by a relation r if and only if the binary
FOHD X : {Y,R−XY } is satisfied by r.
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For the FOHD X : {Y1, . . . , Yk}, denoted by φ, let φ′ denote its corresponding L-
formula: (∧

A∈X

A′

)
→

 k∨
i=1

 ∧
B∈

∪
1≤j≤k,j ̸=i

Yj

B′


 .

Theorem 5 Let Σ∪ {φ} be a set of FDs and FOHDs, and let Rs be an NFS over some
relation schema R. Let L be the set of propositional variables that corresponds to R, S
the set of propositional variables that corresponds to Rs, and let Σ′ ∪ {φ′} denote the set
of L-formulae that corresponds to Σ∪{φ}. Then the following statements are equivalent:

1. Σ |=Rs φ,

2. Σ′ |=LPS φ
′,

3. Σ′ |=3
S φ

′, and

4. (Σ[lhs(φ)Rs])
′ |=BL φ

′.

Proof The result follows from Theorem 3, Corollary 6 and Corollary 7 since a relation
r satisfies an FOHD X : {Y1, . . . , Yk} if and only if for all i = 1, . . . , k − 1 it is the case
that r satisfies the MVD X � Yi.

Example 11 Let R = ASLC, Rs = ALC, Σ = {A → S,AL → C, S : {L,AC}} as in
Example 2. The relation

Article Supplier Location Cost
Kiwi ni Maunganui 1.50
Kiwi ni Taranaki 2.50

shows that the FOHD A : {S, L, C}, denoted by φ, is not implied by Σ in the presence
of Rs. As an illustration of Theorem 5 we note that the LPS interpretation that assigns
T to A′, P to S ′, and F to L′ and C ′, is a model of Σ′ but not a model of the formula
φ′ = A′ → ((L′ ∧ C ′) ∨ (S ′ ∧ C ′) ∨ (S ′ ∧ L′)).

15.2 Boolean dependencies

As an application of our special LP interpretation we introduce the class of Boolean
dependencies (BDs) in the presence of an NFS. This class subsumes Atzeni and Morfuni’s
class of FDs in the presence of an NFS [25, 23], and the class of BDs over total relations
(where the NFS Rs = R) [21]. Note that MVDs are not BDs.

Remark 6 Boolean dependencies have not been very popular in database design yet.
However, the following extension of them allows designers to express quite useful con-
straints. Define for each attribute A ∈ R an equivalence relation EA on the domain of
A. Define further that the Boolean dependency A → B ∨ ¬C holds if and only if for
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any two tuples t1 and t2 we have (t1(A), t2(A)) ∈ EA, then either (t1(B), t2(B)) ∈ EB

or (t1(C), t2(C)) /∈ EC. Using this generalization, we can, e.g., express the following
statement about insurance policy holders. Assume that we have attributes Age, Premium,
and Sex, and that we define equivalence relations for age groups and premium groups.
Then we can express the constraint if two policy holders belong to the same age group,
then their premiums are in the same class or they are of different sexes [123].

The class of Boolean dependencies (BDs) over a relation schema R is defined as the
propositional language BR := R∗ over R. An agreement over R is a function ω : R →
{D,W,S}. For two distinct tuples t1, t2 over R we define the agreement ω{t1,t2} of t1 and
t2 by

ω{t1,t2}(A) =


S , if A ∈ ags(t1, t2)
W , if A ∈ agw(t1, t2)
D , if A /∈ ag(t1, t2)

for all A ∈ R. Intuitively, the definition carries the following meaning: ω{t1,t2}(A) = S
when t1 and t2 strongly agree on A, ω{t1,t2}(A) = W when t1 and t2 weakly agree on A,
and ω{t1,t2}(A) = D when t1 and t2 d isagree on A. We can extend an agreement ω over
R to a function Ω : BR → {D,W,S} as follows:

1. if φ = A ∈ R let Ω(φ) := ω(A),

2. if φ = (¬ψ) let Ω(φ) := ¬Ω(ψ),

3. if φ = (φ1 ∨ φ2) let Ω(φ) := Ω(φ1) ∨ Ω(φ2), and

4. if φ = (φ1 ∧ φ2) let Ω(φ) := Ω(φ1) ∧ Ω(φ2).

On the right-hand side of these definitions, ¬, ∨, and ∧ denote the truth functions defined
by Table 3 where F, P and T are replaced by D, W and S, respectively.

For a relation r and a BD φ over relation schema R we say that r satisfies φ, denoted
by |=r φ, if and only if for all tuples t1, t2 ∈ r the following holds: if t1 ̸= t2, then
Ω{t1,t2}(φ) ∈ {W, S}. In particular, BDs subsume FDs: a relation r satisfies the FD
{A1, . . . , An} → {B1, . . . , Bm} [25, 23] if and only if r satisfies the BD (A1 ∧ · · · ∧An) →
(B1 ∧ · · · ∧Bm).

Let ϕ : R → L be a bijection between a relation schema R and its corresponding set
L = {A′ | A ∈ R} of propositional variables. We extend ϕ to a mapping Φ from BR to
the set L∗. As before, let φ′ = Φ(φ) and Σ′ = {σ′ | σ ∈ Σ}. We define

1. if φ = A, then φ′ = A′,

2. if φ = (¬ψ), then φ′ = (¬ψ′),

3. if φ = (φ1 ∨ φ2), then φ
′ = (φ′

1 ∨ φ′
2), and

4. if φ = (φ1 ∧ φ2), then φ
′ = (φ′

1 ∧ φ′
2).
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We want to show that for any set Σ∪{φ} of Boolean dependencies there is an Rs-total
relation r that satisfies Σ and violates φ if and only if there is an LPS model ω′

r of Σ′

that is not an LPS model of φ′. The following result is the counter-part of Lemma 8.
Note that the definition of satisfaction for BDs implies directly that their implication is
equivalent to that in the world of two-tuple relations. However, since the proof of the
following lemma is considerably simpler than that of Lemma 8 we include it here.

Lemma 9 Let Σ ∪ {φ} be a set of BDs over the relation schema R, and let r be some
relation over R that satisfies Σ and violates φ. Then there is a two-tuple subrelation
r′ ⊆ r such that r′ satisfies Σ and violates φ.

Proof Since r violates the BD φ there are two tuples t1, t2 ∈ r such that t1 ̸= t2 and
Ω{t1,t2}(φ) = D. Let r′ := {t1, t2}. We know that r′ satisfies Σ since r satisfies Σ and
r′ ⊆ r. Consequently, r′ is a two-tuple subrelation of r that satisfies Σ and violates φ.

Lemma 9 tells us that for deciding the implication problem Σ |= φ it suffices to
examine two-tuple relations (instead of arbitrary finite relations). For two-tuple relations
{t1, t2}, however, we can define a corresponding LP interpretation ω′

{t1,t2}. For two tuples
t1, t2 over the relation schema R let ω′

{t1,t2} denote the following special LP interpretation
of L:

ω′
{t1,t2}(A

′) =


T , if ω{t1,t2}(A) = S
P , if ω{t1,t2}(A) = W
F , if ω{t1,t2}(A) = D

.

The following lemma justifies the definition of the special LP interpretation.

Lemma 10 Let r be a two-tuple relation over the relation schema R, and let φ denote
a BD over R. Then we have

• Ωr(φ) = S if and only if Ω′
r(φ

′) = T,

• Ωr(φ) = W if and only if Ω′
r(φ

′) = P, and

• Ωr(φ) = D if and only if Ω′
r(φ

′) = F.

Proof The lemma can be proven by an induction over the structure of φ.

Indeed, a two-tuple relation r satisfies a BD φ if and only if ω′
r is an LP model of the

corresponding L-formula φ′.

Corollary 8 Let r be a two-tuple relation over the relation schema R, and let φ denote
a BD over R. Then r satisfies φ if and only if ω′

r is an LP model of φ′.

In fact, Lemma 9 and Corollary 8 allow us to establish the anticipated equivalence
between the implication of BDs in the presence of an NFS and the LPS implication
of propositional formulae. However, to obtain the equivalence we need to assume that
duplicate tuples can occur.
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Theorem 6 Let Σ∪ {φ} be a set of BDs over the relation schema R, and let Rs denote
an NFS over R. Let L denote the set of propositional variables that corresponds to R,
S the set of variables that corresponds to Rs, and Σ′ ∪ {φ′} the set of L-formulae that
corresponds to Σ∪{φ}. Under the assumption that relations may contain duplicate tuples,
the following are equivalent:

1. Σ |=Rs φ,

2. Σ |=2,Rs φ, and

3. Σ′ |=LPS φ
′.

Proof The equivalence between (1) and (2) is an immediate consequence of Lemma 9.
For (3) implies (2) suppose (2) does not hold. Then there is some two-tuple relation

r over R that satisfies Σ and Rs but violates φ. Since r is Rs-total it follows immediately
from the definition of the special LP interpretation that ω′

r is an LPS interpretation. Fol-
lowing Corollary 8, ω′

r is an LPS model of Σ′ but not an LPS model of φ′. Consequently,
(3) does also not hold.

For (2) implies (3) suppose that (3) does not hold. Then there is an LPS interpretation
ω′ that is a model of Σ′ but not a model of φ′. Define an agreement ω : R → {D,W,S}
by

ω(A) :=


S , if ω′(A′) = T
W , if ω′(A′) = P
D , if ω′(A′) = F

.

Let t1, t2 be two tuples over R such that for all A ∈ R we have ω{t1,t2}(A) = ω(A). In
particular, if ω′(A′) = F, then let t1(A) and t2(A) be distinct elements from dom(A) −
{ni}. We conclude that in the case where one of t1, t2 is subsumed by the other, then
t1(A) = t2(A) holds for all A ∈ R. Moreover, following the definition of the agreement
ω it is true that t1 and t2 are Rs-total since ω

′ is an LPS interpretation. According to
Corollary 8 we know then that r satisfies Σ and Rs, but r violates φ. Therefore, (2) does
also not hold.

The following example illustrates the use of duplicate tuples in a counter-example.

Example 12 Let R = ASLC denote the relation schema Supplies, let Rs = ALC, let
Σ consist of the FDs A → S and A → C, and let φ denote the BD A → ¬L. The BD
says that the same article is not to be delivered from the same location more than once.
The following relation r

Article Supplier Location Cost
Kiwi ni Taranaki 2.50
Kiwi ni Taranaki 2.50

shows that Σ does not imply φ in the presence of Rs. Indeed, the same article can be
delivered from the same location more than once (by the same supplier at the same cost).
For ω′

r we obtain ω′
r(A

′) = T, ω′
r(S

′) = P, ω′
r(L

′) = T and ω′
r(C

′) = T. Indeed, ω′
r is an

LP{A′,L′,C′} interpretation that is a model of Σ′ but not a model of φ′.
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Remark 7 For the special case where Rs = R it is known [124] that the BD ϕ′
R =∨

A∈R ¬A has the following property: the relation r = {t1, t2} is a set (and not a bag) if
and only if the special truth assignment ω′

r satisfies ϕ
′
R =

∨
A∈R ¬A′. In the general case,

however, it is no longer true that there is a BD ϕ′
R that characterizes subsumption-free

two-tuple relations. In fact, for R = A both r1 = {a, ni} and r2 = {a, a′} satisfy the
same BDs over R, but r2 is subsumption-free whereas r1 is not.

For the special case where Rs = R it is known [124] that for every relation schema R
and for every set Σ ∪ {φ} of Boolean dependencies over R it is true that Σ |=R φ if and
only if Σ′ ∪ {ϕ′

R} |=LPL φ
′ where L corresponds to the NFS R. According to Theorem 6

one may suspect that a similar result holds in the general case of an arbitrary NFS Rs.
The following proposition shows that this already fails for the special case where Rs = ∅.

Proposition 5 There is a relation schema R, a singleton FD set Σ and a BD φ over R
such that Σ |= φ, but Σ′ ∪ {ϕ′

R} ̸|=LP φ
′.

Proof Let R = {A(rticle), L(ocation), C(ost)}, Σ = {A → C} and φ = A → ¬L.
Suppose that φ is violated by some relation r that satisfies Σ. Since r violates φ there are
two distinct tuples t1, t2 ∈ r such that t1(A) = t2(A), t1, t2 are A-total and t1(L) = t2(L).
Since r satisfies Σ it follows that t1(C) = t2(C) holds as well. That is, r must be a bag
and not a relation. Consequently, there is no relation that satisfies Σ and violates φ. We
conclude that Σ |= φ.

On the other hand, the LP interpretation ω′ with ω′(A′) = T = ω′(L′) and ω′(C ′) = P
shows that Σ′ ∪ {¬A′ ∨ ¬L′ ∨ ¬C ′} ̸|=LP φ

′.

15.3 Complexity considerations

15.3.1 Boolean dependencies in the absence of a null-free subschema

As a consequence of Theorem 6 we obtain worst-case time-complexity results for the
implication problem of BDs. This problem has been investigated in depth for the logic
LP, and Table 5 provides a summary of the results [82]. In fact, the problem has been
analyzed with respect to three different notions of complexity defined by Vardi [125]. For
data complexity, Σ is the input and φ has fixed size. For expression complexity, φ is
the input and Σ has fixed size. For combined complexity, Σ and φ are the input. The
complexity results also distinguish the input with respect to its syntactic form. A BD
is in Conjunctive Normal Form (CNF) when it is a single conjunction of clauses, where
a clause is a disjunction of literals (i.e. an attribute A or its negation ¬A). A BD is in
Disjunctive Normal Form (DNF) when it is a single disjunction of conjunctions of literals.
In Table 5, the symbol “Any” means that no assumption is made on the syntactic form
of the BDs. For a discussion of these results we refer the reader to [82].

15.3.2 Boolean dependencies in the presence of a null-free subschema

Let Σ be an arbitrary set of BDs over R in NNF, and let φ be an arbitrary BD in
CNF. The following findings establish NFSs as an effective mechanism to balance the
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Table 5: Time-complexities for Deciding BDs
Σ |= φ

Σ φ Σ? |= φ? (Combined) Σ0 |= φ? (Expression) Σ? |= φ0 (“Data”)
Any Any coNP-complete coNP-complete O(|Σ|)
Any CNF O(|Σ| × |φ|) O(|φ|) O(|Σ|)
Any DNF coNP-complete coNP-complete O(|Σ|)
CNF Any coNP-complete coNP-complete O(|Σ|)
CNF CNF O(|Σ| × |φ|) O(|φ|) O(|Σ|)
CNF DNF coNP-complete coNP-complete O(|Σ|)
DNF Any coNP-complete coNP-complete O(|Σ|)
DNF CNF O(|Σ| × |φ|) O(|φ|) O(|Σ|)
DNF DNF coNP-complete coNP-complete O(|Σ|)

expressiveness and efficiency of various entailment relations. They follow immediately
from results established for S-3 logics [79, Theorems 4.4 and 4.6] and Theorem 6.

Corollary 9 For every set Σ of BDs in NNF, and every BD φ in CNF, and every NFSs
Rs and R′

s over R such that Rs ⊆ R′
s, if Σ |=Rs φ, then Σ |=R′

s
φ.

Corollary 9 establishes the monotonicity for the family of the entailment relations
|=Rs . That is, by declaring attributes as NOT NULL, a data administrator enforces at least
all of the previously enforced data dependencies. In Figure 2, this is illustrated as a
potential increase in expressiveness.

Corollary 10 The implication problem Σ |=Rs φ for sets Σ of BDs in NNF, BDs φ in
CNF and NFS Rs over relation schemata R can be decided in time O(|Σ| × |φ| × 2|Rs|).

Corollary 10 establishes a uniform complexity for deciding the family of entailment
relations |=Rs in terms of the NFSs Rs. Therefore, by declaring attributes as NULL, a data
administrator can utilize more efficient algorithms for deciding the associated implication
problem. In Figure 2, this is illustrated as a potential increase in efficiency.

15.4 Characterizing the notions of dependency basis and at-
tribute set closure

As an application of Theorem 3 we generalize Sagiv, Delobel, Parker and Fagin’s logical
characterization of a dependency basis and attribute set closure from the special case
where Rs = R [21] to an arbitrary NFS Rs.

Theorem 7 Let Σ denote a set of FDs and MVDs, and Rs an NFS over the relation
schema R. Let L denote the set of propositional variables that corresponds to R, S the set
of variables that corresponds to Rs, and Σ′ the set of L-formulae that corresponds to Σ.
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Let X and W be disjoint subsets of R. Let ω′
W ′ denote the following LPS interpretation

of L:

ω′
W ′(A′) =


T , if A ∈ X((R−W ) ∩Rs)
P , if A ∈ (R−W )−Rs

F , if A ∈ W
.

If W ∈ DepBΣ,Rs(X) and W and X∗
Σ,Rs

are disjoint, then ω′
W ′ is an LPS model of Σ′. If

ω′
W ′ is an LPS model of Σ′, then W is contained in one set of DepBΣ,Rs(X) and W is

disjoint from X∗
Σ,Rs

.

Proof Let W ∈ DepBΣ,Rs(X), and let W and X∗
Σ,Rs

be disjoint. We show that ω′
W ′

is an LPS model of Σ′. The proof of Theorem 2 defines a two-tuple relation r which
satisfies Σ and Rs. Without loss of generality, let W := Wi where Wi denotes the set
from DepBΣ,Rs(X) in the proof of Theorem 2. According to Lemma 3 and Lemma 5 it
follows that ω′

r is an LPS model of Σ′. However, we have ω′
W ′ = ω′

r. This shows that ω
′
W ′

is an LPS model of Σ′.
Let ω′

W ′ be an LPS model of Σ′. We show first that W is contained in one set of
DepBΣ,Rs(X). Suppose to the contrary thatW is not contained in any set ofDepBΣ,Rs(X).
Then there is a set V ∈ DepBΣ,Rs(X) such that V ∩W ̸= ∅ and W ∩ (R − V ) ̸= ∅. It
follows that ω′

W ′ is not an LPS model of the formula that corresponds to X � V . How-
ever, Theorems 1 and 2 show that X � V is implied by Σ in the presence of Rs, and
Theorem 3 shows that ω′

W ′ is an LPS model of the formula that corresponds to X � V
since ω′

W ′ is an LPS model of Σ′. This is a contradiction. Consequently, W is contained
in one set of DepBΣ,Rs(X).

We show now that W is disjoint from X∗
Σ,Rs

. If W is not disjoint from X∗
Σ,Rs

, then
W , as an element of DepBΣ,Rs(X), must be a singleton set according to Theorem 1, say
W = A. The attribute A is a member of X∗

Σ,Rs
, and therefore there must be an FD

Y → Z in Σ such that A ∈ Z − Y and Y ⊆ XRs (otherwise X → A cannot be derived
from Σ, cf. Lemma 2). Since Y ⊆ XRs and A = W it follows that ω′

W ′ is not an LPS
model of Y → A. This, however, is a contradiction since Y → A ∈ Σ and ω′

W ′ is an LPS
model of Σ′. Consequently, W is disjoint from X∗

Σ,Rs
.

Intuitively, ω′
W ′ is the special LP interpretation ω′

r induced by the two-tuple relation
r := rφ in our completeness proof of D (where W = Wi), cf. Table 2. Note that ω′

W ′

reduces to the propositional truth assignment defined in [21] for the special case where
Rs = R. Moreover, ω′

W ′ is equivalent to an S-3 interpretation, cf. Proposition 1.

15.5 Boolean and S-3 implication

In [63] Sagiv presents an algorithm for deciding the implication problem Σ |=R φ for
sets Σ ∪ {φ} of FDs and MVDs over R. The algorithm can be implemented to run in
time O(p̄Σ × |Σ|) where p̄Σ is the number of sets in DepBΣ,R(lhs(φ)) that have non-
empty intersection with the right-hand side of φ. Using Corollary 2 we can apply Sagiv’s
algorithm to decide implication in the presence of an NFS Rs in time O(|Σ|+ p̄Σ[lhs(φ)Rs]×
|Σ[lhs(φ)Rs]|). Following Corollary 4, we note that our

O(|Σ|+min{kΣ[lhs(φ)Rs], log p̄Σ[lhs(φ)Rs]} × |Σ[lhs(φ)Rs]|)

63



algorithm for deciding Σ |=Rs φ can be applied directly to decide Σ′ |=3
S φ′ for the

corresponding fragment F of Cadoli and Schaerf’s S-3 logics, cf. Corollary 6, a fragment
not studied previously to our knowledge. It follows that the axiomatization D for the
implication of FDs and MVDs in the presence of an NFS Rs also applies to S-3 implication
in F . For any set Σ′ ∪ {φ′} of formulae in F and any S ⊆ L, Σ′ |=3

S φ′ if and only if
Σ′[lhs(φ′)S] |=BL φ

′. Here, Σ′[lhs(φ′)S] is the set of formulae in Σ′ whose set of variables in
the antecedent is a subset of lhs(φ′)S, and lhs(φ′) is the set of variables in the antecedent
of φ′. Note that this confirms a result by Cadoli and Schaerf [79].

15.6 The power of reasoning without null-free subschemata

The following theorem shows that reasoning about BDs in the presence of an NFS can
be simulated by reasoning about BDs in the absence of an NFS. It explains why our
correspondences to the Logic of Paradox provide a very general tool for reasoning about
data dependencies. For a clause φ let Attr(φ) denote the set of attributes that occur in
φ.

Theorem 8 Let Σ ∪ {φ} be a set of BDs over relation schema R where φ is a clause,
and let Rs denote an NFS over R. Then the following two statements are equivalent:

1. Σ |=Rs φ

2. Σ ∪ {¬φ} |=
∨

A∈Rs∪Attr(φ)(A ∧ ¬A).

Proof According to Theorem 6 it suffices to show the equivalence in the world of two-
tuple relations. Without loss of generality let φ denote the clause ¬A1∨ · · ·∨¬An∨B1∨
· · · ∨ Bm.

For (2) implies (1) we assume that (1) does not hold. Consequently, there is some
two-tuple relation r over R such that r satisfies Σ and the NFS Rs but r violates φ.
The violation of φ by r means that Ωr(φ) = D, but this means that ωr(Ai) = S for all
i = 1, . . . , n and ωr(Bj) = D for all j = 1, . . . ,m. In particular we know that r satisfies
Σ and ¬φ. The satisfaction of Rs by r means that ωr(A) ∈ {D, S} for all A ∈ Rs.
Consequently, for all A ∈ Rs ∪Attr(φ) we have ωr(A) ∈ {D,S}. Hence, Ωr(A∧¬A) = D
for all A ∈ Rs ∪Attr(φ). That is, r violates

∨
A∈Rs∪Attr(φ)(A∧¬A). We have shown that

(2) does also not hold.
For (1) implies (2) we assume that (2) does not hold. Consequently, there is some

two-tuple relation r = {t1, t2} over R such that r satisfies Σ ∪ {¬φ} but r violates∨
A∈Rs∪Attr(φ)

(A ∧ ¬A).

The latter implies that Ωr(A ∧ ¬A) = D for all A ∈ Rs ∪ Attr(φ). Now we change the
relation r for every attribute A ∈ Rs where ωr(A) = D holds and where we have either
t1(A) = ni or t2(A) = ni. Without loss of generality let t1(A) = ni. Then we replace
t1(A) by a new value from dom(A) − {ni, t2(A)}. For the resulting relation r′ we have
that ωr′ = ωr holds. Moreover, r′ satisfies Rs. Consequently, r

′ satisfies Σ and Rs but it
violates φ. Consequently, (1) does also not hold.
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We give an example to illustrate the correspondence established in Theorem 8.

Example 13 Let R = ASLC, Rs = ALC, Σ = {A → S,AL → C, S � L} and
φ = ¬A ∨ L ∨ (S ∧ C). Note that the satisfaction of φ is equivalent to that of the two
clauses φ1 = ¬A ∨ L ∨ S and φ2 = ¬A ∨ L ∨ C. The relation

Article Supplier Location Cost
Kiwi ni Maunganui 1.50
Kiwi ni Taranaki 2.50

satisfies Σ and Rs, but violates φ2 and therefore violates φ. One can also see that r
satisfies Σ ∪ {¬φ2} and violates (A ∧ ¬A) ∨ (L ∧ ¬L) ∨ (C ∧ ¬C).
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