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Abstract

Our group’s recent quest has been to use P systems to model parallel and

distributed algorithms. Several framework extensions are recalled or detailed, in

particular, modular composition with information hiding, complex symbols, generic

rules, reified cell IDs, asynchronous operational modes, asynchronous complexity.

We motivate our proposals via P system models of several well-known distributed

algorithms, such as leader election and distributed echo. As another type of ap-

plication, we mention a dynamic programming algorithm for stereo matching in

image processing. We suggest criteria to assess the merits of this modelling ap-

proach and offer preliminary evaluations of our proposed additional ingredients,

which have been useful in refactoring existing systems and could be useful to the

larger P systems community.

Keywords: P systems, P modules, complex symbols, generic rules, cell IDs, distributed
algorithms, parallel algorithms, synchronous networks, asynchronous networks, leader
election, distributed echo, stereo matching.

1 Introduction

A P system is a parallel and distributed computational model, inspired by the structure
and interactions of cell membranes. This model was introduced by Păun in 1998–2000
[29]. An in-depth overview of this model can be found in Păun et al. [31].

Broadly speaking, typical P system research falls into one of the following three ar-
eas, which could be labelled: (1) theory, such as computational completeness (universal-
ity), complexity classes (e.g., polynomial solutions to NP-hard problems) or relationships
with other models (e.g., automata, grammar systems and formal languages); (2) tools,
including designers, simulators and verifiers; and (3) applications, most of these are in
computational biology, but also in a large variety of other areas, such as biomedicine,
economics or linguistics. For a more comprehensive list, refer the to Păun et al.’s survey
[31].
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This talk discusses our group’s recent use of P systems to model parallel and dis-
tributed algorithms, a complementary application area which, except for a few notable
exceptions, such as the pioneering work of Ciobanu et al. [8, 9], has not been addressed
by other research. We intentionally use a maximalist approach, by selecting the most
adequate ingredients for our quest and propose several extensions, which seem to “nat-
urally” fit into the existing P systems framework and are useful or even required for
modelling fundamental distributed and parallel algorithms.

To interest us, a distributed problem should score high on the following criteria:

• The problem must be “self-referential”, i.e. the problem should be given by the
P system itself, more specifically, by its topology, and not as externally encoded
data, which is then fed into a different P system.

• The problem must be a fundamental or very challenging distributed problem.

• The P solution (the P rules which solve the problem) must be short and crisp,
comparable to the best existing pseudo-code, which further implies that the number
of rules must be fixed, regardless of the scale of the problem instance.

• The P solution must be comparable in efficiency to the best known algorithms,
i.e. the number of P steps (a P step is a single time unit in P systems) must be
comparable to the number of steps or rounds.

In this spirit, we have studied a variety of topics:

• Hyperdag P systems (hP): DAG or hypergraph based models, which seem more
adequate for well structured scenarios where the tree model is inadequate, such
as computer networks or phylogenetic trees enhanced with horizontal gene trans-
fers. Interestingly, hP systems are in general not planar, but admit a Moebius-like
graphical representation.

• Network discovery : algorithms to discover and search the neighbourhood and the
whole digraph—in particular, several algorithms to establish disjoint paths.

• FSSP : several variants of the firing squad synchronization problem (which should
probably be called simultaneous neuron firing).

• Fault tolerant distributed computing : Byzantine agreement (the “crown jewel” of
distributed algorithms).

• P modules : a model which favours recursive composition with information hiding.

• Asynchronous P systems : a recent proposal for asynchronous P systems, more
closely related to the mainstream concepts in distributed algorithms, extended
with a validation suite consisting of several efficient asynchronous distributed DFS
and BFS algorithms.

2



• Parallel stereo matching : a recent design of a massively parallel image processing
task.

Here, I report our design choices which have proved most useful and have been refined
in the process. We hope that, by looking back at parallel and distributing systems (which
were one the inspiration sources for the P systems framework), our experience will be
useful to the global P systems community, for developing complex modelling applications.

2 Preliminaries—Basic Model

While we use our own version of P systems, our core results should remain valid and
meaningful for other versions of these systems. As in most of our recent papers [1, 10,
12, 13, 11, 14, 15, 16, 21, 25, 26, 27], our preferred membrane structure is a directed
graph (digraph) or one of its subclasses, such as a directed acyclic graph (DAG) or,
occasionally, a (rooted) tree, or a more complex structure, such as a hypergraph or a
multigraph; (undirected) graph structures can be emulated by symmetric digraphs. Arcs
represent duplex channels, so parents (arc tails) can send messages to children (arc heads)
and children can send messages to parents, i.e. messages can travel along both forward
or reverse arcs’ directions.

Each arc has two labels—one at its tail and another at its head: note that this
is an extension of the usual graph convention, where an arc has just one label. Arc
labels can be used for directing messages over a specific arc. Labels can be explicitly
indicated: otherwise, we assume a default labelling convention. A not explicitly labelled
arc, α = (σi, σj), is implicitly labelled with the indices of its two adjacent cells: j—on
its tail and i—on its head. Figure 4 shows an explicitly labelled arc, (σ1, σ2), labelled as
in the default case.

In the basic model, all cells evolve synchronously. Rules are prioritized (i.e. linearly
ordered) and applied in weak priority order [31]. The general form of a rule [15, 27],
which transforms state S to state S �, is

S x →α S
�
x
� (y)β . . . |z,

where:

• S, S � are states, S, S � ∈ Qi;

• x, x�, y, z are strings which represent multisets of symbols, z being a promoter,
x, x�, y, z ∈ O∗;

• α is a rewriting operator, α ∈ {min, max};

• β is a transfer operator, β ∈ {↑γ, ↓γ, �γ | γ ∈ {∀, ∃}∪Λ}, where γ = ∀ is the default
and Λ is the set of (implicit or explicit) arc labels.

The transfer operator β’s arrow points in the direction of transfer: ↑—towards par-
ents; ↓—towards children; �—in both directions. Note that:
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• By default, we consider duplex (bidirectional) communications.

• If all rules exclusively use ↓, then our system use simplex (unidirectional) commu-
nications, from structural parents to structural children.

• If all rules exclusively use � arrows, then arc directions do not matter: this offers
one way to consider (undirected) graphs, at the rule level (another way, at the
structural level, is to consider symmetric digraphs).

The transfer operator β’s qualifier, γ, indicates the distribution form: ∀—a broadcast
(the default); ∃—an anycast (nondeterministic); or an arc label—a unicast over a specific
arc (i.e. to a specific target).

Although the definition does not enforce this, we typically ask that all cells start
with identical state and rule sets (as being mass-produced by a virtual cell factory); cells
should only differ in their initial contents and their relative position in the structural
digraph [25]. This is a strong requirement; it precludes custom rule sets for each cell,
but, as we will see later, enables the design of complex algorithms with fixed size state
and rule sets, independent of how many cells are included in the system.

3 Extensions—P modules

The above definition corresponds to what we called a simple P module [11]. Figuratively,
if we allow half-arcs (i.e. arc “stumps” or disconnected arc heads and tails), we obtain
more general P modules [12]. The open ends define ports, through which P modules
transfer messages. P modules define a controlled way ro recursively compose P systems,
where internal features of one P module are hidden and inaccessible to other P modules.

Without going into detail (available in [12]), I illustrate these concepts by a series
of figures, where dotted lines delimit P modules. Figure 1 illustrates this idea in a very
simplistic scenario. Figure 2 illustrates the recursive modular composition of a P module
which solves the greatest common divisor (GCD) problem. Figure 3 illustrates the use of
P modules to systematicaly build proper connections in a Byzantine agreement scenario.

τ1

θ1 τ2

θ2 τ1

θ1 τ2

θ2

(a) (b) (c)

Z1

Z2
Π1 Π2 Π3

Figure 1: A simple composition of two P modules.

4 Extension—Complex Symbols

While atomic symbols are sufficient for many theoretical studies (such as computational
completeness), complex algorithms need appropriate data structures. Previous studies
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x ≥ y

x ← x− y

x = 0

z ← x, x ← y, y ← z

No

Y es

Y es

No

Π1

Π3

Π2

Π4

Π5

Π6

N1

Y1

Z6 = Y4

N4

Π1

Π3

Π2

Π4

Π5

Π6

σ1

σ3

σ4

σ2

Z3

Z2

Figure 2: Left: A flowchart for computing the GCD. Right: A corresponding P module
built by recursive modular composition.

have proposed complex symbols in the form of strings. While string symbols are enough
in some scenarios, they are not adequate for complex algorithms, because strings require
complex and costly encoding and decoding (parsing), which would adversely clutter the
algorithm’s description and affect its runtime performance. We proposed a simple form of
complex symbols, similar to Prolog terms and Lips tuples, with a crisp and fast encoding
and decoding and simplified “unification” semantics [27]. Such complex symbols can be
viewed as complex molecules, consisting of elementary atoms or other molecules.

We thus enhance our initial vocabulary, by recursive composition of elementary sym-
bols from O into complex symbols, which are compound terms of the form:

t(i, . . . ),

where

• t is an elementary symbol representing the functor;

• i can be

◦ an elementary symbol,

◦ another complex symbol,

◦ a free variable (open to be bound, according to the cell’s current configuration),
or

◦ (in more complex scenarios) a multiset of elementary and complex symbols
and free variables.

Also, we often abbreviate complex symbols (i) by using subscripts for term arguments
and (ii) by using superscripts for runs of repeated occurrences of the same functor.
The following are examples of such complex symbols, where a, b, c, d, e, f are elementary
symbols and i, j are free variables (assuming that these are not listed among elementary
symbols):
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Figure 3: Modular design a Byzantine agreement scenario.

• b(2) = b2,

• c(i) = ci,

• d(i, j) = di,j,

• c(a2b3),

• d(e, i, f(j)),

• c(), c(c()) = c2(), c(c(c())) = c3(), . . . ,

Note that the sequence items c(), c2(), c3(), . . . can be interpreted as integers, 0, 1, 2, . . .
(with an excess functor, to smooth the treatment of 0).

We use complex symbols as required: (i) for cell contents (including promoters), (ii)
for cell IDs (described in the next section), (iii) for states (which can be viewed as symbols
with specific semantics) and (iv) for arc labels.

5 Extension—Generic Rules

Further, we process our multisets of complex symbols with high-level generic rules, using
free variable matching. This approach is a practical necessity, because:

1. it enables reasonably fast parsing and processing of subcomponents (practically
impossible with string symbols) and
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2. it allows us to describe an algorithm with a fixed size elementary alphabet and a
fixed sized rule set, independent of the number of cells in the system (sometimes
impossible with only atomic symbols).

A generic rule is identified by using complex symbols and an extended version of the
classical rewriting mode, in fact, a combined instantiation.rewriting mode, which is one
of min.min, min.max, max.min, max.max, i.e. we consider all possible combinations between
(1) an instantiation mode in min, max and (2) a rewriting mode in min, max.

To explain generics, consider a cell, σ, containing three counters, c2(), c2(), c3(),
(respectively interpreted as numbers 1, 1, 2), and all four possible instantiation.rewriting
modes of the following “decrementing” rule:

(ρα) S1 c
2(i) →α S2 c(i).

where α ∈ {min.min, min.max, max.min, max.max}.

1. If α = min.min, rule ρmin.min nondeterministically generates one of the following rule
instances:

(ρ�1) S1 c
2() →min S2 c() or

(ρ��1) S1 c
3() →min S2 c

2().

In the first case, using (ρ�1), cell σ ends with counters c(), c2(), c3(), i.e. numbers
0, 1, 2. In the second case, using (ρ��1), cell σ ends with counters c2(), c2(), c2(),
i.e. numbers 1, 1, 1.

2. If α = max.min, rule ρmax.min generates both following rule instances:

(ρ�2) S1 c
2() →min S2 c() and

(ρ��2) S1 c
3() →min S2 c

2().

In this case, using (ρ�2) and (ρ��2), cell σ ends with counters c(), c2(), c2(), i.e. numbers
0, 1, 1.

3. If α = min.max, rule ρmin.max nondeterministically generates one of the following rule
instances:

(ρ�3) S1 c
2() →max S2 c() or

(ρ��3) S1 c
3() →max S2 c

2().

In the first case, using (ρ�3), cell σ ends with counters c(), c(), c3(), i.e. numbers
0, 0, 2. In the second case, using (ρ��3), cell σ ends with counters c2(), c2(), c2(),
i.e. numbers 1, 1, 1.

4. If α = max.max, rule ρmin.max generates both following rule instances:

(ρ�4) S1 c
2() →max S2 c() and

(ρ��4) S1 c
3() →max S2 c

2().

In this case, using (ρ�4) and (ρ��4), cell σ ends with counters c(), c(), c2(), i.e. numbers
0, 0, 1.
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The interpretation of min.min, min.max and max.max modes is straightforward. While
other interpretations could be considered, the mode max.min indicates that the generic
rule is instantiated as many times as possible, without superfluous instances (i.e. without
duplicates or instances which are not applicable) and each one of the instantiated rules
is applied once, if possible.

For all modes, the instantiations are ephemeral, created when rules are tested for
applicability and disappearing at the end of the step. Further examples appear in the
next section.

6 Extension—Cell IDs

The well-known distributed leader election problem and its famous impossibility result,
as presented by Lynch [23] and Tel [32], highlights the need for reified cell IDs1. Leader
election is a fundamental problem in distributed algorithms and can be viewed as a
highly abstract and simplified version of cellular differentiation in developmental biology.
Imagine a network of cells which must elect a leader. A celebrated result shows that this
is impossible, in the deterministic case, if the system is totally symmetric, e.g., if the
network is a circular ring and all cells are totally identical. This might be our case, if
all our cells start with the same rule set, same state and same contents. While we have
decided to keep the same rule set for all cells, we can still solve the problem by letting
each cell, σi, start with its own unique cell ID symbol, ιi, where ι is a dedicated cell ID
functor. We thus reify the external cell index i into an internal complex symbol, which is
accessible to the rules; in fact, we will use it exclusively as an immutable promoter [27].

Figure 4 shows a ring structured system, where cells contain cell ID symbols, ιi; this
breaks the symmetry and enables the leader election process.

2

1

σ2

ι1

ι2

ι3

ι4

ι5

ι6

σ3σ5

σ6

σ1

σ4

Figure 4: A ring structured system, where cells contains cell ID symbols (σ1 contains
ι1, . . . ); note also that arc (σ1, σ2) is explicitly labelled with its default labels.

Note that, as suggested by the counters discussed in the previous section, cell IDs do
not need to increase the alphabet size— we can encode any number of cell IDs with a
fixed number of elementary symbols, e.g., as unary or binary strings.

To explain cell IDs, consider this generic rule:

S3 a nj →min.min S4 b (ci)�j |ιi.
1To reify = to consider or make (an abstract idea or concept) real or concrete; cf. republic = res

publica (Lat.) = public object.
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This generic rule uses the min.min instantiation.rewriting mode and complex symbols,
ci and nj, where i and j are free variables (recall that ci and nj are shorthands for c(i)
and n(j)).

Generally, a free variable could match anything, including another complex symbol.
However, in this rule, i and j are constrained to match cell ID indices only:

1. i—because it also appears as the cell ID of the current cell, ιi;

2. j—because it also indicates the target of the transfer mode, �j, if we assume that
arcs are implicitly labelled by cell indices.

Briefly:

1. according to the first min, this rule is instantiated once, for one of the existing nj

symbols (if any), while promoter, ιi, constrains i to the cell ID index of the current
cell, σi;

2. according to the second min, the instantiated rule is applicable once, i.e. if applied,
it consumes one a and one nj, produces one b and sends one ci to neighbour j (if
this neighbour exists, as parent or child).

As a more elaborate example, consider a system with N cells, σ1, σ2, . . . , σN , where
cell σ1 has two structural neighbours, σ2 and σ3, is in state S3 and contains multiset
a2n2

2n3. Consider also all four possible instantiations of the following rule, ρα, where α

is one of the four extended rewriting modes:

(ρα) S3 a nj →α S4 b (ci)�j |ιi.

• Rule ρmin.min generates one of the two low-level instances:
either S3 a n2 →min S4 b (c1)�2 or S3 a n3 →min S4 b (c1)�3 .

• Rule ρmin.max generates one of the two low-level instances:
either S3 a n2 →max S4 b (c1)�2 or S3 a n3 →max S4 b (c1)�3 .

• Rule ρmax.min generates the two low-level instances:
S3 a n2 →min S4 b (c1)�2 and S3 a n3 →min S4 b (c1)�3 .

• Rule ρmax.max generates the two low-level instances:
S3 a n2 →max S4 b (c1)�2 and S3 a n3 →max S4 b (c1)�3 .

These generated instances are then considered for application, as in the basic model.
Without our new ingredients, each cell would need a much larger logically equivalent
custom rule set. For example, instead of ρmax.max, cell σ1 would need its own custom rule
set, consisting of N low-level rules:

{S3 a nj →max S4 b (c1)�j | 1 ≤ j ≤ N}.

We argue that our approach has positive consequences, both at the conceptual and
practical (implementation) level. In fact, this was critical to achieve our goal of solving
complex distributed problems with fixed size rule sets (independent of the problem size).
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7 Asynchronous P Systems

The traditional P system model is synchronous, i.e. all cells evolve controlled by a single
global clock. P systems with various asynchronous features have been recent investigated
[18, 3, 7, 4, 6, 5, 17, 22, 28, 33]. We are looking for similar but simpler definitions, closer
to the standard definitions used in distributed algorithms [23, 32]. We are interested to
model fundamental and challenging asynchronous distributed algorithms and to assess
the merits of such modelling exercise.

Here, we further elaborate the ideas first proposed in our previous paper [1]. In
contrast to the synchronous case, fully asynchronous P systems are characterized by the
absence of any system clock, let alone a global one. However, an outside observer may
very well use a clock to time the evolution.

Our approach, based on classical notions in distributed algorithms [32], does not
require any change in the static descriptions of P systems and only their evolutions differ
(i.e. just the underlying “P engine” works differently):

• For each cell, each step starts after a random step delay, t, after the preceding step.

• For each cell, its rules application step, once started, takes zero time (it occurs
instantaneously).

◦ Note that a small execution delay might look more realistic, but could need-
lessly complicate the arguments.

• For each message, its delivery delay, t, is random:

◦ either from its origin;

◦ or, more realistically, after the previous message sent over the same channel
(arc).

• We typically assume that messages sent over the same arc arrive in strict queue
order (FIFO)—but one could also consider arrival in arbitrary order (bag, instead
of queue).

• The message granularity is still an open question. Should a message contain: (a)
A single symbol (elementary or complex)? (b) All symbols sent by the same rule?
(c) All symbols sent from a cell, during an application step?

Note that classical synchronous P systems can be considered as a special case of
asynchronous P systems, where all step and delivery delays are one, i.e. t = 1.

For the purpose of time complexity, the time unit is chosen to be greater than any
step or delivery delay, i.e. all such delays are real numbers in the closed unit interval,
i.e. t ∈ [0, 1]. The runtime complexity of an asynchronous system is the supremum over
all possible executions.
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This proposal suggests further directions of study of fundamental notions and prop-
erties related to asynchronous systems [23, 32], such as causality, liveness, safety, fairness
and specific proof and verification techniques.

We next present two more elaborate examples, described in more detail elsewhere
[1]: an algorithm for neighbours discovery and a version of the well-known Echo algo-
rithm [32].

8 Discovering Neighbours (Async)

Many distributed P algorithms require that cells are aware of their local topology, i.e. each
cells knows its neighbours’ IDs.

In this algorithm, all cells start in the same initial state, S0, with the same set of rules.
Each cell, σi, contains a cell ID symbol, ιi, which is immutable and used as a promoter.
Additionally, the source cell, σs, is marked with one symbol, a. All cells end in the same
state, S3. On completion, each cell contains its cell ID symbol, ιi, and neighbour pointers,
nj. The source cell, σs, is still marked with symbol a.

Figure 5 illustrates a sample graph and the discovered neighbourhoods. Listing 6
presents the solution, i.e. the rule set which solves this problem. Note that rule 1.1 is
generic and uses a cell ID promoter, which was instrumental in ensuring a fixed size rule
set. For more details, refer to [1].

Although the algorithm terminates, cells involved in this algorithm have no way of
knowing when the algorithm terminates. This problem is shared by other asynchronous
algorithms and highlights some of the difficulties faced by the asynchronous model: for
details and possible solutions refer to [32].

1

2 3

6

4 5

Cell Neighbour pointer symbols
σ1 n2, n4

σ2 n1, n3, n4

σ3 n2, n4, n5, n6

σ4 n1, n2, n3, n5

σ5 n3, n4, n6

σ6 n3, n5

Figure 5: A sample graph and the discovered neighbourhoods.

9 Echo Algorithm (Async)

The Echo algorithm is a wave algorithm [32]. It starts from a source cell, which broadcasts
forward messages. These forward messages transitively reach all cells and, at the end, are
reflected back to the initial source. The forward phase establishes a virtual spanning tree
and the return phase is supposed to follow up its branches. The tree is virtual, because it
does not involve any structural change: instead, virtual child-parent links are established
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0. Rules for state S0:

1 S0 a →min S1 ay (z) �∀
2 S0 z →min S1 y (z) �∀
3 S0 z →max S1

1. Rules for state S1:

1 S1 y →min.min S2 (ni) � |ιi
2 S1 z →max S2

2. Rules for state S2:

1 S2 →min S3

2 S2 z →max S3

Figure 6: Rules for discovering neighbourhoods.

by pointer symbols. The algorithm terminates when the source cell receives the reflected
messages from all its neighbours.

This algorithm requires that each cell “knows” all its neighbours (structural heads
and tails). This could be realised by a preliminary phase which builds this knowledge,
such as presented in Section 8. Therefore, we assume that each cell already knows all
neighbours’ IDs.

Scenario 1 in Figure 7 assumes that all messages arrive in one time unit, i.e. in
synchronous mode. The forward and return phases take the same time, i.e. D time units
each, where D is the diameter of the underlying graph, G. Scenario 2 in Figure 8 assumes
that some messages travel much faster than others, which is possible in asynchronous
mode: t = �, where 0 < � � 1. In this case, the forward and return phases take very
different times: D and N − 1 time units, respectively, where N is the number of nodes
of graph G. At first sight, this seems paradoxical and highlights some of the subtleties
involving runtime estimates for asynchronous algorithms. For more details, including the
rule set (omitted here), refer to our paper [1].

(a) (b) (c)

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

(d)

Figure 7: The Echo algorithm in synchronous mode. Edges with arrows indicate child-
parent arcs in the virtual spanning tree built by the algorithm. Thick arrows near edges
indicate messages. Steps (b), (c), (d) take one time unit each.

10 Parallel Stereo Matching

Image processing offers many opportunities for parallel modelling, but, with a few notable
exceptions, mostly from the Seville group [2, 30], has not yet attracted much attention
from the P systems community.

12



1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1
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1
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4

1
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(a) (b) (c) (d)

(e) (f) (g) (h)

Time units = � Time units = 2� Time units = 3� Time units = 4�

Time units = 2 Time units = 3 Time units = 4

1

2

3

4

Time units = 1

Figure 8: One possible evolution of the Echo algorithm in asynchronous mode, with
different forward and return times. Dotted thick arrows near edges indicate messages
still in transit. Steps (a), (b), (c), (d) take � time units each; steps (e), (f), (g), (h) take
one time unit each.

To finalize, we briefly present an image processing application, detailed in our forth-
coming paper [21]. We designed a massively parallel synchronous P model for imple-
menting a critical part of the dynamic programming stereo matching algorithm proposed
by Gimel’farb [20]. Our model processes in parallel all potentially optimal similarity
scores that trace candidate decisions, for all the disparities associated with each current
x-coordinate. The theoretical performance of our P model is conceptually comparable to
that of a physical parallel processor with an unlimited number of processing elements.

This modelling exercise has enabled us to generalise and refactor our matching al-
gorithm, following our cell structure. The result is a more robust and flexible version,
which allows us to fine tune its parameters and enhance its capabilities, without rewrit-
ing it from scratch. We think that our modelling exercise would have been practically
impossible without some of the additional ingredients mentioned in this paper, such as
labelled multigraph structures and generic rules with complex symbols.

Figure 9 shows, in order, a monocular left image, a monocular right image and their
true disparity map (the ground truth). This is the well-known Tsukuba head-and-lamp
stereo pair, first proposed by Nakamura et al. [24]. Figure 10 shows our computed
disparity maps: left—by the old program; right—by our refactored and better tuned
program.

Figure 9: In order: monocular left image, monocular right image, true disparity map.
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Figure 10: Computed disparity maps: left—old program; right—refactored program.

11 Conclusions

We suggested a few simple criteria for assessing the merits of using P systems for mod-
elling complex parallel and distributed algorithms, such as a fixed set of short and crisp
rules and a runtime performance similar to state-of-art pseudo-code. We discussed a few
P system ingredients which are useful or even required to achieve these goals, such as
complex symbols, generic rules, cell IDs, provisions for modular development and asyn-
chronous processing. We note that some of these specific details need further study. We
believe that our proposed additional ingredients have proved their usefulness in refactor-
ing existing realistic systems and could be interesting to the larger P systems community.
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[31] G. Păun, G. Rozenberg, and A. Salomaa. The Oxford Handbook of Membrane Com-
puting. Oxford University Press, Inc., New York, NY, USA, 2010.

[32] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2000.

[33] Z. Yuan and Z. Zhang. Asynchronous spiking neural P system with promoters.
In Proceedings of the 7th international conference on Advanced parallel processing
technologies, APPT’07, pages 693–702, Berlin, Heidelberg, 2007. Springer-Verlag.

17


