
CDMTCS
Research
Report
Series

P Systems Implementation of
Dynamic Programming
Stereo

Georgy Gimel’farb
Radu Nicolescu
Sharvin Ragavan
Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-401
April 2011 / Revised: December 2011

Centre for Discrete Mathematics and
Theoretical Computer Science



P Systems Implementation of Dynamic Programming
Stereo

Georgy Gimel’farb, Radu Nicolescu and Sharvin Ragavan
Department of Computer Science

The University of Auckland, Private Bag 92019
Auckland, New Zealand

{g.gimelfarb, r.nicolescu}@auckland.ac.nz,
srag010@aucklanduni.ac.nz

December 31, 2011

Abstract

Designing parallel versions of sequential algorithms has attracted renewed at-
tention, due to recent hardware advances, including various general-purpose multi-
core and many-core processors, as well as special-purpose FPGA implementations.
P systems consist of networks of autonomous cells, such that each cell transforms
its input signals in accord with its symbol-rewriting rules and feeds the output
results into its immediate neighbours. Inherent massive intra- and inter-cell par-
allelisms make P systems a prospective theoretical testbed for designing efficient
parallel and parallel-sequential algorithms. This paper discusses the ability of P
systems to implement the symmetric dynamic programming stereo (SDPS) match-
ing algorithm, which explicitly accounts for binocular or monocular visibility of 3D
surface points. Given enough cells, the P system implementation speeds up the
inner algorithm loop from O(nd) to O(n + d), where n is the width of a stereo
image and d is the disparity range. The implementation also gives an insight into
to a more general SDPS algorithm that allows a possible multiplicity of solutions
to the ill-posed optimal stereo matching problem.

Keywords: Membrane computing, Parallel systems, Stereo matching, Sym-
metric dynamic programming stereo (SDPS).

1 Introduction

Essentially, a P system is a network of data processing cells, inspired by the structure
and interaction of living cells [1, 6, 10, 12, 13, 14, 15, 16]. Each cell transforms input and
local symbols in accord with rewriting rules and sends some of the resulting symbols out
to its immediate neighbours. Rules of the same cell can be applied in parallel (if possible)
and all the cells evolve in parallel, in a distributed synchronous mode. The underlying
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network is a digraph or a more specialized version, such as a directed acyclic graph (dag)
or a tree (which is the most studied case). Advanced scenarios consider cases when cells
or arcs can dynamically appear, disappear or move.

Several previous papers suggested that P systems offer a theoretically efficient testbed
for the design of parallel versions of various sequential image analysis tasks, e.g. segmen-
tation [4, 5, 17]. This paper discusses a P system based implementation of the Symmet-
ric Dynamic Programming Stereo (SDPS) [8]. A P system model for stereo matching,
which reveals and separates the inherently parallel and sequential stages of SDPS, was
introduced first in our paper [9]. Below, the latter is extended and elaborated further.
Section 2 defines and details a P model. The P implementation of SDPS is discussed in
Section 3 and its impact on this algorithm (as well as on other dynamic programming
solutions of ill-posed problems with multiple equivalent solutions) is outlined in Section 4.
Conclusions are given in Section 5.

2 General P Model

Dinneen et al.’s basic definition of simple P modules [6] covers many common P systems,
such as cell-like (based on trees), hyperdag (based on dags), tissue and neural P systems
(based on directed graphs). This definition is further generalised below, by introducing
new features, which appear useful for modelling SDPS.

Definition 1. A simple P module with duplex channels is a system Π = (O,K,∆),
where O is a finite non-empty alphabet of symbols; K is a finite set of cells and ∆ is an
irreflexive binary relation on K, representing a set of structural parent-child arcs between
cells (essentially a digraph), with duplex communication capabilities.

Each cell, σi ∈ K, has the initial configuration σi0 = (Qi, si0, wi0, Ri), and the current
configuration σi = (Qi, si, wi, Ri), where:

• Qi is a finite set of states;

• si0 ∈ Qi is the initial state;

• si ∈ Qi is the current state;

• wi0 ∈ O∗ is the initial multiset of symbols;

• wi ∈ O∗ is the current multiset of symbols;

• Ri is a finite ordered set of multiset rewriting rules of the form:

s x→α s
′ x′ (u)βγ . . . |z,

where s, s′ ∈ Q, x, x′, u, z ∈ O∗, α ∈ {min, max}, β ∈ {↑, ↓, l} and γ ∈ K ∪ {∀}.
Except the two states, s and s′, all other ingredients are optional and can be
omitted. For example, if u = z = λ (the empty multiset of symbols), then this rule
can be abbreviated as s x→α s

′ x′.
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All cells evolve synchronously. A cell evolves by applying one or more rules that
may change its content and state and may send symbols to its neighbours. For cell
σi = (Qi, si, wi, Ri), a rule s x→α s

′ x′ (u)βγ |z ∈ Ri is applicable if s = si, xz ⊆ wi. The
application of a rule has two sub-steps: (i) its left-hand side is processed, x is removed
from the current content, the next state s′ is decided; (ii) its right-hand side is processed,
the cell transits to the decided target state s′, x′ is added to the current content and u is
sent as specified by the transfer operator βγ (as further described below). Multiset z is
a promoter : it enables the rule, but does not otherwise participate in its application and
remains unchanged. The rules are applied in weak priority order [14]: (a) higher priority
applicable rules are applied before lower priority rules, and (b) a lower priority rule can
be applied after other rules only if it reaches the same target state.

In this paper, we use the rewriting operators α ∈ {min, max}, and the transfer op-
erators βγ ∈ {↓∀, ↓j, ↑j}, where σj ∈ K. Other (not used in this paper) operators are
described [7]. The rewriting operator, α = min indicates that the rule is applied once;
while α = max indicates that the rule is applied as many times as possible. Multiset u
represents a message, sent to digraph neighbours, up, down or up and down structural
arcs, as specified by the βγ operators.

If the right-hand side of the rule contains (u)↓∀ , then, for each application of this rule,
a copy of multiset u is sent to each cell in ∆(i), i.e. to each structural child of σi. If the
right-hand side of the rule contains (u)↓j , then, for each application of this rule, a copy
of multiset u is sent to cell σj ∈ K, if j ∈ ∆(i), i.e. if σj is a structural child of σi (the
mode ↓∀ is also known as ↓repl). However, if j 6∈ ∆(i), then message u is silently lost.
Similarly, if the right-hand side of the rule contains (u)↑j , then, for each application of
this rule, a copy of multiset u is sent to cell σj ∈ K, if j ∈ ∆−1(i), i.e. if σj is a structural
parent of σi; otherwise, if j 6∈ ∆−1(i), then message u is silently lost.

A state is called quiescent if no rules can be applied for empty cells in this state
(i.e. an empty quiescent cell does not evolve until some symbol appears in this cell, e.g.,
is received from this cell’s neighbours).

Although the definition does not enforce this, we typically require a fixed number of
fixed size rule sets. This is a strong requirement, which enables the design of scalable
algorithms, which can solve problem instances of any size, without increasing the alphabet
size or the number of rules. One could imagine a virtual cell factory, which, using a fixed
number of cell blueprints, creates any number of required cells, which are then allocated
different positions in a structural digraph.

Extensions. We extend the basic simple P module concept with the following three
features, which are useful in complex scenarios, such as SDPS.

1. Arcs can have labels to be used in transfer operators, instead of cell labels. For
example, the occurrence of (u)↓k in the right-hand side of a σi rule indicates that
message u is to be sent from cell σi to cell σj, where k is the label of arc (σi, σj) ∈ ∆,

also denoted by σi
k→ σj. Otherwise, if cell σi does not have an outgoing arc labelled

k, message u is silently lost. Although not globally unique, arc labels are locally
unique (unique in each local neighbourhood).
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2. A rule can send several messages (not just one), each one to a different neighbour,
e.g., the occurrence of (u)↓k(u

′)↓k′ in the right-hand side of a rule indicates that
messages u, u′ are to be sent via arcs labelled k, k′, respectively.

3. A pair of neighbouring nodes can be connected by several labelled arcs (not just
one), i.e. the supporting structural digraph becomes a directed multigraph with
labelled arcs.

These extensions offer additional support for the design of scalable algorithms (with-
out increasing the alphabet size or the number of rules), as many cells can reuse the same
labels for their outgoing arcs.

Example 2. Consider a simple P module Π, with four cells, σ1, σ2, σ3, σ4, sharing the
same three states, s0 (initial state), s1, s2, and the same ordered set of four rules:

1. s0 a→min s1 a
′ (e)↓∀ (f)↓u (g)↓v (h)↓w

2. s0 b→max s1 b b
′

3. s0 c→min s2 c
′

4. s0 d→max s1 d
′

σ1

σ2

σ4

σ3

u
v

Figure 1: P module based on a multigraph with labelled arcs.

Assume that these four cells are arranged in the multigraph structure shown in Fig-
ure 1, where cells σ1 and σ2 are connected by two arcs, labelled u and v, and all cells are
initially empty, except cell σ1, which contains the symbol multiset ab2cd2. In this sce-
nario, all rules are applicable for cell σ1. First, rule 1 is applied once and sets the target
state to s1. Next, rule 2 is applied exactly twice, because the right-hand side symbols
b are produced after all rules are applied. However, rule 3 is not applied, because its
right-hand side indicates a different target state, s2. Finally, rule 4 is applied twice. In
the final configuration of the system, after one step: σ1 is in state s1 and contains mul-
tiset a′b2b′2cd′2; σ2 is in state s0 and contains multiset efg; σ3 is in state s0 and contains
multiset e; σ4 is in state s0 and is empty.

3 SDPS: P system design

Sample scenario. The stereo matching scenario in Example 3 will be used throughout
the rest of this paper.
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Example 3. Two cameras, L and R, in a (simplistic) planar configuration in Figure 2
view a line object, defined by points {pi | i ∈ [0, 6]}. Each camera defines a (non-
rectangular) coordinate system, X = [0, 5]. Assuming that all the points in this plane
share the same y-coordinate y = 0, our points have the following coordinates, in a
(xleft, y, xright) system: p0 = (0, 0, 0), p1 = (1, 0, 0), p2 = (2, 0, 1), p3 = (3, 0, 2), p4 =
(3, 0, 3), p5 = (4, 0, 4) and p6 = (5, 0, 5). Points may be classified by their visibility state:
binocular (B)—seen by both cameras, monocular-left (ML)—seen by the left camera only
and monocular-right (MR)—seen by the right camera only; e.g., p0 is ML and p4 is MR.
Note that, under an assumed single continuous surface, the monocular visibility is caused
by self-occlusions. The point p0 can be seen from the left camera only (so can be called
monocular left by visibility), and the point p4 is monocular right (can be seen from the
right camera only); all other points are binocular (can be seen by both camera). Such
sequences are known as profiles.

Profiles can be represented in an alternate notation, which will be used throughout the
rest of paper, where the xright coordinate is replaced by the difference to be subtracted
from xleft to obtain xright. This difference, d = xleft − xright, is called parallax, or
disparity, and can be used to estimate depth distances. By this transformation, in the
(xleft, y, d) system, our sequence becomes: p0 = (0, 0, 0), p1 = (1, 0, 1), p2 = (2, 0, 1),
p3 = (3, 0, 1), p4 = (3, 0, 0), p5 = (4, 0, 0), p6 = (5, 0, 0). Clearly, points with larger
disparity are closer to the cameras than points with smaller disparity; in this scenario,
points p1, p2, p3, with disparity 1, are closer to the cameras than the other points, with
disparity 0.

Note that the projection of the profile on the left coordinate system gives an unam-
biguous representation of the full profile. In our case, this projection yields a reduced
disparity sequence: 0, 1, 1, 1, 0, 0; between the two points sharing the same x-coordinate,
p3 and p4, the projection selects the one closer to the cameras (which is also the one with
larger disparity). The projection ignores the monocular right points, but these can be
unambiguously reconstructed from the reduced disparity sequence.

Binocular stereo matching determines the disparities associated with the points that
are in visual field of two cameras, solely based on the pixel values recorded. Our scenario
assumes that the pixel intensity values are 15, 10, 30, 50, 15, 10 for the left camera and
10, 30, 50, 50, 15, 10 for the right camera. In general, this is a complex problem, as
different points may appear with the same grey scale intensity, or the same point may
appear with different grey intensities in the two cameras. In fact, mathematically, the
problem is ill-posed, as there always exist ambiguities, i.e. scenarios which, for the same
pixel intensities, offer more than one valid interpretation. We want first to regularise
this problem and then solve it as fast as possible, using all parallel computing facilities
available.

Concepts. Given a pair of rectified images, let C = XYD be a discrete space of 3D
points, p = (x, y, d), of a single optical (visible) continuous surface, reduced to the left
image plane XY, with integer planar (x, y)-coordinates, x ∈ X = [0, n − 1], y ∈ Y =
[0,m − 1] and specified by integer disparities, d ∈ D = [dmin, dmax], of corresponding
points, (x, y) and (x − d, y), depicting p in the left and right image, respectively. We
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Figure 2: Sample configuration for our algorithm.

further assume that this correspondence is left-total, right-total and order preserving.
Each 2D profile relating to a conjugate pair of scanlines with the same y-coordinate,

y ∈ Y, is given by a sequence of points dy = {(x, y, d) | x ∈ X, d ∈ D}, such that, for
each two successive points, p′ = (x′, y′, d′) and p = (x, y, d), either: (i) x = x′ + 1 and
d ∈ {d′, d′ + 1} or (ii) x = x′ and d = d′ − 1.

A profile, dy, can be unambiguously (reversibly) represented by a reduced profile,

d̂y: its projection on the left image space. Specifically, for each x ∈ X, we only keep

its highest associated disparity value. It is clear that d̂y can be simply described by a

sequence of disparity values, d̂y = {di | i ∈ X}, and:

|X| = |d̂y| ≤ |dy| ≤ 2 · |X|.
Let s ∈ {B,ML,MR} indicate visibility of a 3D point. Consider two successive profile

points, extended with explicit visibility states: v′s′ = (x′, y, d′, s′) and vs = (x, y, d, s).
Column “Constraints” of Table 1 summarizes the visibility constraints assumed for each
profile. In fact, the visibility constraints define a relation Ω, describing the forward
transition between two successive points of a profile. Tables 2 and 3 show the forward
transition relation, Ω, and its inverse, the backward transition relation, Ω−1; these two
relations are further used in our construction.

Figure 3 shows an intuitive representations of the above constraints, as transitions
between visibility states.

MRBML

3

4 7

2

6 8

5

1

Figure 3: Allowed transitions between visibility states.

Given y ∈ Y, let gL(x, y) and gR(x, y) denote grey intensities along two corresponding
scanlines, for x ∈ X. Without loss of generality, we assume that these two lines have the
same length, |X|. A simplified version of SDPS relates the point-wise signal dissimilarity:

• to a thresholded absolute difference δ(x, y, d) = max{0, |gL(x, y)−gL(x−d, y)|−θ},
θ ≥ 0, between the corresponding signals for a binocularly visible point, vB, or
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Table 1: Visibility constraints and dissimilarity scores between two successive points:
v′s′ = (x′, y, d′, s′) and vs = (x, y, d, s).

# s′ s Constraints ϕy(vs|v′s′) Arc
1 B B x = x′ + 1, d = d′ δ(x, y, d) b
2 MR B x = x′ + 1, d = d′ δ(x, y, d) c
3 ML B x = x′ + 1, d = d′ + 1 δ(x, y, d)× 0.5 a
4 B ML x = x′ + 1, d = d′ δoccl b
5 MR ML x = x′ + 1, d = d′ δoccl c
6 ML ML x = x′ + 1, d = d′ + 1 δoccl × 0.5 a
7 B MR x = x′, d = d′ − 1 δoccl × 0.5 d
8 MR MR x = x′, d = d′ − 1 δoccl × 0.5 e

Table 2: The forward transition relation, Ω, determined by the visibility constraints.

v′s′ Ω(v′s′) Arc
(x′, y, d′,ML) (x′ + 1, y, d′ + 1,ML) a
(x′, y, d′,ML) (x′ + 1, y, d′ + 1, B) a
(x′, y, d′, B) (x′ + 1, y, d′,ML) b
(x′, y, d′, B) (x′ + 1, y, d′, B) b

(x′, y, d′,MR) (x′ + 1, y, d′,ML) c
(x′, y, d′,MR) (x′ + 1, y, d′, B) c
(x′, y, d′, B) (x′, y, d′ − 1,MR) d

(x′, y, d′,MR) (x′, y, d′ − 1,MR) e

Table 3: The backward transition relation, Ω−1, determined by the visibility constraints.

Ω−1(vs) vs Arc
(x− 1, y, d− 1,ML) (x, y, d,ML) a
(x− 1, y, d− 1,ML) (x, y, d, B) a

(x− 1, y, d, B) (x, y, d,ML) b
(x− 1, y, d, B) (x, y, d, B) b

(x− 1, y, d,MR) (x, y, d,ML) c
(x− 1, y, d,MR) (x, y, d, B) c
(x, y, d+ 1, B) (x, y, d,MR) d

(x, y, d+ 1,MR) (x, y, d,MR) e
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• to a heuristic regularising score, δoccl ≥ 0, for a monocularly visible point, vML
or

vMR
.

Column “ϕy(vs|v′s′)” of Table 1 shows, in the first line of each table cell, the rules
for integrating point-wise dissimilarities between successive profile points. For example,
transition #1, B ⇒ B, adds a cost of δ(x, y, d). Due to unequal numbers of points in
profile variants to be compared by their total signal similarity, these point-wise dissim-
ilarities are corrected by taking into account their actual unit or half-unit shifts in the
Cyclopean space. The second line of each table cell in same column indicates when this
correction is applied and the correction factor. For example, transition #7, MR ⇒ MR,
indicates the correction factor of 0.5, thus its transition cost is 0.5 · δoccl.

For the first points in a profile, we take:

1. ϕy(vB) = δ(x, y, d);

2. ϕy(vML
) = δoccl;

3. ϕy(vMR
) = δoccl.

See [8] for the full version of SDPS, which adapts the matching to possible local
contrast and offset deviations of the corresponding signals.

SDPS computations. For a given y ∈ Y, SDPS minimizes the dissimilarity score
between the two y-conjugate scanlines:

d∗y = arg min
dy

Φy(dy), (1)

Φy(dy) = ϕy(v0,s0) +

|dy |−1∑
i=1

ϕy(vi,si |vi−1,si−1
), (2)

where the current disparity profile, dy, is indexed over [0, |dy| − 1].

The forward pass computes potentially minimal dissimilarity scores Fy(vs) and back-
ward transitions Ty(vs), by sequential pass along x ∈ X, over all d ∈ D. If Ω−1(vs) 6= ∅,
then:

Fy(vs) = min
v′s′∈Ω(vs)

{Fy(v′s′) + ϕy(vs|v′s′)}, (3)

Ty(vs) = arg min
v′s′∈Ω−1(vs)

{Fy(v′s′) + ϕy(vs|v′s′)}. (4)

Otherwise, if Ω−1(vs) = ∅, then:

Fy(vs) = ϕy(vs), (5)

Ty(vs) = � (undefined). (6)

For each y ∈ Y, the backward pass computes minimal profiles dy, in reverse order:

initially : v̂s = arg min
vs

{Fy(vs)} (7)

while Ty(v̂s) 6= � : v̂′s′ = Ty(v̂s) (8)
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If we do not apply the corrections mentioned in Table 1, the above equations take
simpler forms. For example, Equation 3 takes the general forms:

Fy(vB) = min{Fy(v′B), Fy(v
′
MR

), Fy(v
′
ML

)} (9)

+ δ(x, y, d),

where {v′B,v′MR
,v′ML

} = Ω−1(vB);

Fy(vML
) = min{Fy(v′B), Fy(v

′
MR

), Fy(v
′
ML

)} (10)

+ δoccl,

where {v′B,v′MR
,v′ML

} = Ω−1(vML
);

Fy(vMR
) = min{Fy(v′B), Fy(v

′
MR

)}+ δoccl, (11)

where {v′B,v′MR
} = Ω−1(vMR

).

Design issues. Without loss of generality, our P system was designed for one pair
of conjugate scanlines (|Y| = 1), which arguably is the most challenging parallelisation
task. This core solution can be further extended to a stereo pair of images (|Y| > 1)
in a straightforward manner, using “trivial” parallel processing of each pair of conju-
gate scanlines. We also take dmin = 0, so the disparities range over the integer interval
D = [0, dmax], and we encode integer numbers by repeating symbols, starting with one oc-
currence for zero (as in traditional λ-calculus), e.g., the base symbol a gives the following
encodings: 0→ a, 1→ a2, 2→ a3, etc.

A bird’s eye view of our P system shows several types of cells:

• Input cells, codenamed L, that hold pixel values of the left scanline;

• Input cells, codenamed R, that hold pixel values of the right scanline;

• Output cells, codenamed D, that will hold, without loss of generality, disparities
for optimal profiles, in the reduced format (projected on the left image plane);

• Work cells, codenamed W , that compute the forward and backward phase of our
dynamic programming algorithm, keeping track of the visibility states (ML, B,
MR);

• Work cells, codenamed M , that help the selection of global minimum.

The critical visibility constraints and dissimilarity integration rules, indicated in Ta-
ble 1, are implemented by way of arcs linking the W work cells, as indicated by column
“Arc”. For example, transition #.1, B ⇒ B, will be supported via arc labelled a. Further
details are given in Section 3.1.

For simplicity, in this paper we do not apply the optional corrections indicated in
Table 1, i.e. the four cases involving multiplications by 0.5. We can thus use the simpler
formulas given by Equations 9, 10 and 12, where the indicated Fy(v

′
s′) costs come as

messages, via arcs a, b, c, d and e. However, if required, the corrections can be supported,
by rewriting rules which divide given counters by two. For example, the rewriting formula
a2 →max a halves a counter represented by a symbols.
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Example 4. Consider again our basic scenario, from Example 3, where: n = 6, X =
[0, 5], Y = {0}. Assuming dmax = 3, D = [0, 3], θ = 0 and δoccl = 18, the above SDPS
algorithm determines that the global minimum dissimilarity score is 36, which is achieved
by two optimal profiles:

d = {(0, 0, 0), (1, 0, 1), (2, 0, 1), (3, 0, 1), (3, 0, 0),
(4, 0, 0), (5, 0, 0)},

d′ = {(0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0),
(4, 0, 0), (5, 0, 0)},

d̂ = {0, 1, 1, 1, 0, 0} (reduced form),

d̂′ = {0, 0, 0, 0, 0, 0} (reduced form).

(12)

The actual computations are not shown here, but appear in the sequel, as executions
steps of our P system version.

3.1 Cells, initialisation and arcs

Cells. We use a P system, Π, consisting of five major components (groups of cells
sharing the same rule sets):

• L: a list of |X| cells, σLi , i ∈ X, which represent the left scan line, initialized with
the left pixel values, encoded in base a. In the scenario of Example 4, these cells
are initialized, in order, with the following multisets: a16, a11, a31, a51, a16, a11.

• R: a list of |X| cells, σRi , i ∈ X, which represent the right scan line, initialized with
the right pixel values, encoded in base c. In the scenario of Example 4, these cells
are initialized, in order, with the following multisets: c11, c31, c51, c51, c16, c11.

• D: a list of |D| cells, σDi , i ∈ X, which represent a disparity profile, initially empty.
During the last phase of our P program, these cells will contain optimal disparity
values, in base d. In the scenario of Example 4, for profile d̂, these cells will contain,
in order, the following multisets: d1, d2, d2, d2, d1, d1.

• W : an array of |X|×|D| cells, σWij , i ∈ X, j ∈ D, which represent the main workspace.
Each cell σij encloses three logical (virtual) subcells, respectively holding monocular-
left values (ML), binocular values (B), and monocular-right values (MR). The
initialisation of these cells is described later on, in this section.

• M : a list of |X| cells, σMj , j ∈ D, which represent a secondary workspace, which
identifies the global minimum score, among dmax +1 possible scores. Initially, these
cells are empty, except the bottom cell, σM0 , which starts with one copy of symbol,
k.

Figure 4 shows all these cells, without initialisation, for our sample scenario indicated
in Example 4.
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Figure 4: Cells of Π and arcs between major components.

Workspace initialisation. The W -cells are initialised as follows:

• Each cell above the first S/W to N/E diagonal, σWij , i ∈ X, j ∈ D, j > i, contains
one copy of symbols w′a, w

′
b and w′c, interpreted as the infinite values of its ML, B

and MR subcells, respectively.

• Each other top-row cell, σWi,dmax
, i ∈ X, i ≥ dmax, contains one copy of symbols w′a

and w′c (interpreted the same way as above).

• Each cell on or below the first S/W to N/E diagonal, σWij , i ∈ X, j ∈ D, j ≤ i,
contains θ copies of symbol t, interpreted as the dissimilarity threshold.

• The top-left cell, σW0,dmax
, contains one copy of symbol k, which triggers the whole

computation.

• Each other W -cell contains δoccl copies of symbol oa and δoccl copies of symbol
oc, which indicate the occlusion weight parameters for its ML and MR subcells,
respectively.

Figure 5 shows a fully initialised P system Π, for the scenario of Example 4, just
before it starts.

Note. As much as possible, symbols a, b, c will be associated with ML, B, MR data,
respectively. However, this convention does not apply to arc labels.

Arcs. The cells are linked by arcs in a labelled directed multigraph, ∆. We have cross-
component arcs between our five major components: L,R → W → M,D and internal
arcs in our two “workhorse” components: W → W , M →M . The arcs are incrementally
constructed by the following enumeration:

• Each L-cell is parent of its corresponding W -column, in the S direction: σLi → σWij ,
i ∈ X, j ∈ D.
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Figure 5: Initialised P system Π (arcs omitted).

• Each R-cell is parent of a corresponding W -diagonal, running S/W to N/E: σRi →
σWi+j,j, i ∈ X, j ∈ D, i+ j ∈ X.

• Each W -cell before the last column and below the top row is parent, via an a-
labelled arc, of the W -cell in the N/E direction: σWij

a→ σWi+1,j+1, i ∈ X \ {n − 1},
j ∈ D \ {dmax}.

• Each W -cell before the last column is twice parent, via b- and c-labelled arcs, of

the W -cell following it, in the E direction: σWij
b,c→ σWi+1,j, i ∈ X \ {n− 1}, j ∈ D.

• Each W -cell above the bottom row is twice parent, via d- and e-labelled arcs, of

the W -cell below it, in its S direction: σWij
d,e→ σWi,j−1, i ∈ X, j ∈ D \ {0}.

• Each rightmost column W -cell is parent, via an f -labelled arc, of its corresponding

M -cell, in the E direction: σWn−1,j

f→ σMj , j ∈ D.

• Each W -cell is parent, via a g-labelled arc, of its corresponding D-cell, in the S
direction: σWij

g→ σDi , i ∈ X, j ∈ D.

• Each M -cell above the bottom is parent, via an h-labelled arc, of its underlying

M -cell, in the S direction: σMj
h→ σMj−1, j ∈ D \ {0}.

Example 5. Even for our simple example, a full picture of all these arcs is impossible,
because of its sheer complexity. However, we can suggest a representative fragment of
these arcs.

Using highlighting, Figure 4 suggests the following cross-component arcs (L,R →
W →M,D):

• σL0 → σW03 , σW02 , σW01 , σW00 ;

• σR3 → σW30 , σW41 , σW52 ;

12



σW30

σW31

σW32

σW42

a

d e

σW40

σW41

c

b

ML

MR

B
ML

MR

B

ML

MR

B
ML

MR

B

ML

MR

B
ML

MR

B
σW30

σW31

σW32

σW42

σW40

σW41

c

b

ML

MR

B
ML

MR

B

ML

MR

B
ML

MR

B

ML

MR

B
ML

MR

B

a

d e

Figure 6: Typical arcs between W -cells. Here arc representations are extended, to indi-
cate the logical message flows, from logical subcell to logical subcell.

• σW51

f→ σM1 ;

• σW23 , σW22 , σW21 , σW20

g→ σD2 .

Figure 4 also shows internal arcs in the M component:

• σM3
h→ σM2 ,

• σM2
h→ σM1 ,

• σM1
h→ σM0 .

Figure 6 shows internal arcs between W -cells. In this figure, the arc tails and heads
are extended, to suggest the logical message flows, between logical subcells. For example,

arc σW31
b→ σW41 , although “physically” just links these two cells, logically, it channels data

from σW31 ’s subcell B to σW41 ’s subcells ML and B.
Figure 6, left, shows internal arcs, from the “point-of-view” of a sending cell, σW31 :

• σW31
a→ σW42 ;

• σW31

b,c→ σW41 ;

• σW31

d,e→ σW30 .

Figure 6, right, shows internal arcs, from the “point-of-view” of a receiving cell, σW41 :

• σW30
a→ σW41 ;

• σW31

b,c→ σW41 ;

• σW42

d,e→ σW41 .

Remark. Arcs a, b, c, d and e, which link logical subcells (B, ML, MR), correspond
to profile transitions between visibility states (B, ML, MR), as described in Tables 1, 2
and 3. For example, arc b, which links logical subcell B to logical subcells B and ML,
corresponds to transitions #1 and #4.
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Figure 7: Fully initialised P system Π, just before the start of the forward pass phase
(II).

Construction. Except actual pixel values of the left and right scanlines, which are
specific to each problem instance, the system can be constructed and initialised before
its actual usage, starting from (i) two essential parameters: the scanline length, |X|,
and the disparity range, |D|; and (ii) two other, less critical parameters (where defaults
may be assumed): the dissimilarity threshold, θ, and the occlusion weight, δoccl. One
could imagine that, given these parameters, a single “ur-cell” will multiply and create all
required cells and arcs. This construction should require O(|X|+|D|) steps only, however,
it needs further extensions to the usual P systems framework and we do not develop it
here.

3.2 Evolution—bird’s eye view

At a very high level, the system Π evolves through four phases: (I) an initialisation
completion phase; (II) a forward pass phase; (III) a global minimum phase; (IV) a
backward pass phase; all closely related to the above description of SDPS.

(I) Initialisation completion.
Each W -cell on or below the first S/W to N/E diagonal, σWij , i ∈ X, j ∈ D, j ≤ i,
determines, in its binocular subcell B, a preliminary score, encoded in base z, which
is the thresholded absolute difference between the pixel values received from the left
scanline and the right scanline, via L,R→ W arcs. At the end of this preliminary phase,
all W -cells have values for all their subcells, ML, B and MR. Figure 7 shows a snapshot
of the sample system Π, at the end of phase (I).

(II) Forward pass.
The forward pass phase proceeds on slope 2 diagonals, starting from the top-left cell
(initially marked with k). All cells on the same diagonal work in parallel. In our sam-
ple scenario, the computational wave moves, in order, over the diagonals {σw03}, {σw02},
{σw01, σ

w
13}, {σw00, σ

w
12}, {σw11, σ

w
23}, {σw10, σ

w
22}, {σw21, σ

w
33}, . . . ,

{σw40, σ
w
52}, {σw51} and {σw50}. Figure 8 indicates this progression of the computational

wave.
During the forward pass, in the general case, each cell σWij determines:
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Figure 8: Progression on the computational wave during the forward pass phase (II):
starting from the top-left cell, σW03 , on slope 2 diagonals.

b59
a72

b37
a55

b77
a55

b54
a37

b37
a55

b72
a55

b19
a37

b37
a55

b95

b57
a55

b19
a37

b46
a44

b57
a55

b19
a37

b26
a24

b6
a19

b70 b95

0 1 2 3 4 5

0

1

2

3

W
w′

b
w′

c

w′
a

w′
b
w′

c

w′
a

w′
b
w′

c

w′
a

w′
b
w′

c

w′
a

w′
b
w′

c

w′
a

w′
b
w′

c

w′
a

w′
c

w′
a

w′
c

w′
a

w′
c

w′
a

c95

c77

c90

c72

c88

c75

c37

c113

c75

c37c37

c113w′
c

w′
c

w′
c

d4 d4 d4 d4 d4 d4

d3 d3 d3 d3 d3 d3

d2d2d2d2d2d2

d d d ddd

Figure 9: Final scores of the subcells of the W -cells at the end of the forward pass phase
(II).

1. In its B and ML subcells, the sum between its previous scores, as completed in
phase (I), and the minimum value of those received:

• via arc a: the ML score of σWi−1,j−1, if i > 0, j > 0;

• via arc b: the B score of σWi−1,j, if i > 0;

• via arc c: the MR score of σWi−1,j, if i > 0.

Essentially, these operations corresponds to Formulas 9 and 10.

2. In its MR subcell, the sum between its previous score and the minimum score of
those received:

• via arc d: the B score of σWi,j+1, if j < dmax;

• via arc e: the MR score of σWi,j+1, if j < dmax.

Essentially, these operations corresponds to Formula 12.

Figure 9 shows the final scores of the W -cells at the end of the forward pass phase.
Additionally, each W -cell keeps pointers to the origin of the minimum received scores,

which are symbols, pa, pb, pc, pd, pe, indicating labels of the corresponding via arc, a, b, c,
d, e, which brought in the minimum scores. These pointers are shown in Figure 11 and
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Figure 11: The backward pass traversal, phase (IV), and final values of D-cells.

will be used in the backward pass phase. When the wave reaches cells in the rightmost
column of W , their final scores are sent to the corresponding M -cells, via f -labelled arcs.

(III) Global minimum. Using two sub-phases, a top-down sweep followed by a bottom-
up one, the M -cells determine the global minimum score and trigger the backward pass,
using the reverse direction of the f -labelled arcs.

Figure 10 illustrates the evolution of the M -cells for our sample scenario.

(IV) Backward pass. The backward pass phase follows back the pointers stored in the
forward pass, during the evaluation of the minimum score. W -cells traversed during the
backward pass send their disparity positions to the corresponding D-cells, via g-labelled
arcs, which in the end return the problem’s solution. Figure 11 shows the backward pass
traversal using the backward pointers; D-cells contain disparity values of one optimal
profile, d.

We can either stop with the first optimal profile, or explore all optimal profiles. The P-
rules presented here explore all optimal profiles in a depth-first-search manner. However,
an alternative solution uses breadth-first-search, which enables a parallel evaluation of a
“best” optimal profile (on additional criteria, not discussed here).

3.3 Rules

Each group of cells has its own state and rule set. Alternatively, all cells could start from
the same initial state, s0, and differentiate later, as required; however, we do not detail
this extra path here.

(L) An L-cell starts from state s10, broadcasts its a-encoded left pixel value, gL(x, y),
to all its W -children (a W -column), and ends in state s11:
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1. s10 a→max s11 a (l)↓∀

Grand total for rule set (L): 1 P step (all L-cells in parallel).

(R) An R-cell starts from state s20, broadcasts its c-encoded right pixel values, gR(x, y),
and ends in state s21:

1. s20 c→max s21 c (r)↓∀

Grand total for rule set (R): 1 P step (all R-cells in parallel).

(W ) A W -cell starts from state s30 and evolves successively through three major sub-
sets, (W1), (W2) and (W3), idling at their boundaries. Rule sets are presented in their
logical activation order. Therefore, rule set (M) will be presented inserted between (W2)
and (W3).

(W1) Starts from state s30, computes δ(x, y, d), as the z-encoded thresholded absolute
difference between the received left and right pixel values (a-encoded and c-encoded,
respectively), and then idles in state s40:

1. s30 l→max s31 |w′b
2. s30 r →max s31 |w′b
3. s30 l r →min s31 v

4. s30 l r →max s31

5. s30 l→max s31 v

6. s30 r →max s31 v

7. s31 t v →min s40 z

8. s31 t v →max s40

9. s31 t→max s40

10. s31 v →max s40 z

11. s31 →min s40

Grand total for rule set (W1): 1 P step (all W -cells in parallel).

(W2) Conceptually, this rule set corresponds to the forward pass and is further parti-
tioned in its own subsets: (W2.0), (W2.1), . . . , (W2.5).

Table 4 shows traces of the forward pass phase of the first three and last three diag-
onals (rounds) of the W -cells.

(W2.0) All W -cells idle in state s40, until they receive the wave triggering symbol k—as
indicated at (W2.5) below—after which they continue through state s41. The top-left
W -cell, σ0,dmax , makes an exception: it continues without delay, because it already has
one k, from the initialisation process.

1. s40 k →min s41 k

Total for rule set (W2.0): 1 P step, for each W -cell, after receiving the wave triggering
symbol, k.
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(W2.1) AW -cell transits from state s41 to state s42, computes min{Fy(v′B), Fy(v
′
MR

), Fy(v
′
ML

)},
as the x-encoded minimum value of those received via arcs a, b and c (a-, b-, c-encoded,
respectively), with due attention to infinite boundary conditions, and stores the proper
backward pointer, pa, pb or pc.

1. s41 →min s42 pb |wa wb wc

2. s41 wa wc →min s42

3. s41 →min s42 pa |wb wc
4. s41 a→max s42 x |wb wc
5. s41 wb wc →min s42

6. s41 a b→max s42 x |wc a b

7. s41 a→max s42 pb |wc a b

8. s41 b→max s42 pa |wc a b

9. s41 a→max s42 |wc a b

10. s41 b→max s42 |wc a b

11. s41 a b→min s42 x |wc
12. s41 →min s42 pb |wc
13. s41 b→max s42 x |wc
14. s41 wc →min s42

15. s41 a b c→max s42 x |a b c

16. s41 a b→min s42 pc |a b c

17. s41 b c→min s42 pa |a b c

18. s41 a c→min s42 pb |a b c

19. s41 a→min s42 pb |a b c

20. s41 b→min s42 pc |a b c

21. s41 c→min s42 pb |a b c

22. s41 a→max s42 |a b c

23. s41 b→max s42 |a b c

24. s41 c→max s42 |a b c

25. s41 a b c→max s42 x

26. s41 b c→max s42 x

27. s41 b→min s42 pc

28. s41 c→min s42 pb

29. s41 b→max s42

30. s41 c→max s42

31. s41 →min s42 pc

Total for rule set (W2.1): 1 P step, for each W -cell.

(W2.2) A W -cell transits from state s42 to state s43, computes min{Fy(v′B), Fy(v
′
MR

)},
as the y-encoded minimum value of those received via arcs d and e (d-, e-encoded,
respectively), with due attention to infinite boundary conditions, and stores the proper
backward pointer, pd or pe.

1. s42 d→max s43 y |we
2. s42 we →min s43 pd

3. s42 →min s43 pd |d e
4. s42 d e→max s43 y

5. s42 d→min s43 pe

6. s42 e→min s43 pd

7. s42 d→max s43

8. s42 e→max s43

9. s42 →min s43 |w′a w′c
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Total for rule set (W2.2): 1 P step, for each W -cell.

(W2.3) A W -cell transits from state s43 to state s44, computing: (i) Fy(vB), as the
b-encoded sum of the z-encoded δ(x, y, z) with the x-encoded minimum determined by
(W2.1); and (ii) Fy(vML

), as the a-encoded sum of the oa-encoded δoccl with the x-encoded
minimum determined by (W2.1).

1. s43 x→min s44 |oa
2. s43 oa →max s44 a |oa
3. s43 z →max s44 b |oa
4. s43 x→max s44 a b |oa
5. s43 oa →min s44 a

6. s43 wb →min s44

7. s43 z →min s44

8. s43 z →max s44 b

9. s43 x→max s44 b

10. s43 →min s44

Total for rule set (W2.3): 1 P step, for each W -cell.

(W2.4) A W -cell transits from state s44 to state s45, computing Fy(vMR
), as the c-

encoded sum of the oc-encoded δoccl with the y-encoded minimum determined by (W2.2).

1. s44 oc →min s45 w
′
c |wd

2. s44 oc →max s45 |wd
3. s44 wd →min s45

4. s44 y →min s45 |oc

5. s44 oc →max s45 c |oc
6. s44 y →max s45 c |oc
7. s44 oc →min s45 c

8. s44 →min s45

Total for rule set (W2.4): 1 P step, for each W -cell.

(W2.5) At this stage, a W -cell transits from state s45 to state s60, forwards the wave
trigger symbol k and its computed values to its neighbouring W -cells, and, if the cell is
in the last column, to its neighbour M -cell:

• via arc a: one k

• via arcs a and f : the a-encoded Fy(vML
)

• via arc b and f : the b-encoded Fy(vB)

• via arc c and f : the c-encoded Fy(vMR
)

• via arc d: one k plus a d-encoded equivalent of the b-encoded Fy(vB)

• via arc e: an e-encoded equivalent of the c-encoded Fy(vMR
)
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Infinity symbols are used, if actual values are not available, i.e. for boundary cells. Note
that k is properly sent, over arcs a and d, but not over arcs b and c: this ensures that
the computing wave moves as required, as a slope 2 diagonal. A W -cell receiving k will
break out its idling and resume with rule set (W2.0). Although not required, the given
rules keep copies of the sent symbols, for visualisation purposes.

1. s45 k →min s60 (k)↓a (k)↓d

2. s45 k →max s60

3. s45 a→max s60 a
′ (a)↓a (a)↓f

4. s45 b→max s60 b
′ (b)↓b (d)↓d (b)↓f

5. s45 c→max s60 c
′ (c)↓c (e)↓e (c)↓f

6. s45 w
′
a →min s60 w

′
a (wa)↓a (w′a)↓f

7. s45 w
′
b →min s60 w

′
b (wb)↓b (wd)↓d (w′b)↓f

8. s45 w
′
c →min s60 w

′
c (wc)↓c (we)↓e (w′c)↓f

Total for rule set (W2.5): 1 P step, for each W -cell.
Total for all six rule sets (W2): 6 P steps, for each W -cell, after receiving the wave

triggering symbol, k.
During this forward pass phase, all W -cells on the same wave (slope 2 diagonal) work

in parallel, achieving maximum parallelism on the disparity axis, D. Thus, for all W -cells,
grand total for rule set (W2): O(|X|) P steps.

(M) M -cells start from state s50 and determine the overall minimum of all the values
received via arcs f , as indicated in rule set (W2.5). The work is divided into two subphases:

1. s50 ⇒ s51 ⇒ s52 ⇒ s53: Firstly, a top-down sweep, over arcs h. If the current
W -cell holds the minimum so far, then the proper backward pointer is recorded,
as pa, pb or pc. The sweep ends at the bottom M -cell, which was initially marked
with one k.

2. s53 ⇒ s54 Secondly, a bottom-up sweep, over the reverse direction of arcs h. This
sweep stops on the first M -cell holding a backward pointer, which indicates the
global minimum. Next, the existing backward pointer, pa, pb or pc, is used to send
the “right” backtrack token, a, b or c, respectively.

1. s50 b→min s51 pb m q |w′c
2. s50 b→max s51 q |w′c
3. s50 w

′
a w

′
c →min s51

4. s50 a b c h→max s51 q

5. s51 a→max s52 |a
6. s51 b→max s52 |b
7. s51 c→max s52 |c
8. s51 h→max s52 |h

9. s51 a b c→min s52

10. s51 b c→min s52 pa

11. s51 b→min s52 pc

12. s51 a→min s52 pb

13. s51 c→min s52 pb

14. s51 h→min s52 m

15. s51 q →max s52 (h)↓h

16. s52 k →min s53 k
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17. s53 k pa →min s54 (a)↑f |m
18. s53 k pb →min s54 (b)↑f |m

19. s53 k pc →min s54 (c)↑f |m
20. s53 k →max s54 (k)↑h

Total for rule set (M): 3 or 4 P steps for each M -cell, thus, for all cells, a grand total
of O(|D|) P steps.

(W3) This rule set start from state s60 and implements the final, backward pass, phase.
It starts from one of the M -cells and is further relayed by the activated W -cells, in the
reverse order of the optimal path. The existing backward pointers, stored during the
forward pass, pa, pb or pc, are used to further relay the “right” backtrack tokens, a, b
or c, respectively. At the same time, but only if it has received an a or a b, the current
W -cell sends its g-encoded disparity position to its corresponding D-cell, via arc g. This
ensures that, for each column, only the largest disparity is recorded. Thus, when the
backtrack ends, the D-cells will contain a d-encoded reduced profile (projected on the X
axis).

1. s60 g →max s61 g (d)↓g |a
2. s60 g →max s61 g (d)↓g |b
3. s60 a→min s61 a (a)↑a |pa
4. s60 a→min s61 a (b)↑b |pb
5. s60 a→min s61 a (c)↑c |pc

6. s60 b→min s61 b (a)↑a |pa
7. s60 b→min s61 b (b)↑b |pb
8. s60 b→min s61 b (c)↑c |pc
9. s60 c→min s61 c (b)↑d |pd

10. s60 c→min s61 c (c)↑e |pe
Total for rule set (W3): 1 P step, for each W -cell along the optimal profile, sequen-

tially. Thus, a grand total of O(|X|) P steps.

3.4 All optimal solutions.

The above system can be enhanced to efficiently explore all optimal solutions, either
sequentially, using a depth-first-search method (DFS), or in parallel, using a breadth-
first-search method (BFS). The actual extension rules are not presented here. We refer
the reader to our papers [3, 11], where we analyse a variety of efficient methods for DFS
and BFS in P systems, leveraging their parallel and distributed facilities.

3.5 Runtime complexity.

The asymptotic runtime complexity of our P model, O(n+ d) P steps, which is arguably
optimal, is summarized by Theorem 6. In contrast, the best implementation on existing
parallel hardware is limited, by hardware resources, to O(nd/q), where q is the number
of available processors.

Theorem 6. The P system described in Section 3 completes in O(n+ d) P steps.

The proof follows from synthesising the sequential and parallel execution patterns of
the above rule sets.
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4 Impact of P modelling onto SDPS

We designed a massively parallel synchronous P model for implementing a critical part of
a symmetric dynamic programming stereo matching algorithm [8]. Our model processes
in parallel all potentially optimal similarity scores that trace candidate decisions for all
the disparities associated with each current x-coordinate. The theoretical performance
of our P model is conceptually comparable to that of a physical parallel processor with
an unlimited number of processing elements.

This P modelling exercise has enabled us to not only identify a small bug in an existing
practical SDPS implementation (in the C programming language), but also (and what is
much more important) refactor this algorithm, based on our cell structure. The result
is a more robust and flexible version, which allows us to fine tune its parameters and
enhance its capabilities, without rewriting it from scratch.

Main impact of the P model onto SDPS stems from the cell structure capability to
keep track (at least, in principle) of multiple equivalent optimum solutions. Traditional
DP based optimisation assumes implicitly only a single globally optimum solution and
thus stores only a single potentially optimal backward transition, e.g., Ty(vs) in Section 3,
even if there exist more than one equivalent choice. At the same time, the binocular
stereo matching belongs to a class of fundamentally ill-posed inverse optical problems and
typically has a rich set of equivalent solutions (i.e. visible 3D scene surfaces) resulting in
the same globally maximum similarity between the images of a stereo pair depicting the
scene. Heuristic regularisation of the stereo matching problem with the non-zero occlusion
score allows for reducing the number of equivalent solutions, but still the unique solution
is not guaranteed and the traditional DP performs an arbitrary selection from the set of
the remaining equivalent solutions.

a b

c d

Figure 12: Left stereo images (a,c) and the true disparity maps (b,d) for the “Tsukuba
Heads” and “Cones” scenes [2].

Refactoring SDPS in Section 3 accounts for the multiple solutions by storing in each
cell at the forward stage all the equivalent potentially optimal backward transitions and
marking at the backward stage all the cells included into the equivalent optimal solutions.
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a b

c d

Figure 13: Top (a,c) and bottom (b,d) bounding surfaces and corresponding Cyclopean
images, reconstructed for the distance threshold θ = 16 with no regularisation (the
occlusion score δoccl = 0) and projected to the left image plane.

In spite of a combinatorial number of the latter, the refactored SDPS allows us to explore
the set of the equivalent solutions, e.g. to output its “envelope”, which consists of two
bounding extreme surfaces. Because each spatial cell p = (x, y, d) in SDPS has only
eight possible backward transitions, three or two per visibility state s, each cell in the
refactored SDPS will store at most eight transitions, rather than a single one in the
traditional version. Generally, the same refactoring can be applied to the DP solutions
of other ill-posed optimisation problems to account for multiple equivalent solutions (at
the expense of the extra cell memory).

Figure 12 shows left images of the Middlebury stereo pairs “Tsukuba Head” and
“Cones” together with their true disparity maps [2]. Figures 13 and 14 demonstrate
the grey-coded top and the bottom bounding surfaces of the disparity maps’ envelopes
for non-regularised matching and the corresponding Cyclopean images of the surfaces
computed with the refactored SDPS and projected onto the left image planes. The
images produced by these very different equivalent optimal surfaces are virtually the
same as the initial stereo images in Figure 12. Figure 15 illustrates the pixel-wise spans
between the envelope surfaces. This and other available structural information about the
multiple equivalent solutions could be useful in developing more accurate stereo matching
techniques.

5 Conclusions

We presented a massively parallel P model for implementing a critical part of SDPS. Our
solution is based on simple P modules, with extensions that allow our model to adapt
to complex cases such as SDPS. Our model processes all potentially optimal similarity
scores that trace candidate decisions, for all the disparities associated with each current
x-coordinate. We plan to further extend the solution, from pairs of scanlines to stereo
pairs of full images. To avoid complex and lengthy arguments, we did not discuss in
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a b

c d

Figure 14: Top (a,c) and bottom (b,d) bounding surfaces and corresponding Cyclopean
images, reconstructed for the distance threshold θ = 16 with no regularisation (the
occlusion score δoccl = 0) and projected to the left image plane.

a b

Figure 15: Spans of the disparity envelopes in Figs. 13 and 14 in the blue(0)-to-red(the
maximum span) range coding.

this paper how all the cells have been created and initialised. We are investigating an
advanced model, which starts as one single “ur-cell” and then, given essential parameters,
such as |X| and |D|, grows until it reaches the proper size and shape, required by SDPS
solution. We are also working on improved P system simulators, that are able to leverage
the parallel features of this design on a variety of parallel hardwares: multi-cores, many-
cores and clusters.
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[14] Gheorghe Păun. Introduction to membrane computing. In Gabriel Ciobanu, Mario J.
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