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Georgy Gimel’farb, Radu Nicolescu, Sharvin Ragavan

Abstract

Designing parallel versions of sequential algorithms has attracted renewed at-
tention, due to recent hardware advances, including various general-purpose multi-
core, multiple core and many-core processors, as well as special-purpose FPGA
implementations. P systems consist of networks of autonomous cells, such that
each cell transforms its input signals in accord with symbol-rewriting rules and
feeds the output results into its immediate neighbours. Inherent intra- and inter-
cell parallelism make the P systems a prospective theoretical testbed for designing
parallel algorithms. This paper discusses capabilities of P systems to implement the
symmetric dynamic programming algorithm for stereo matching, with due account
to binocular or monocular visibility of 3D surface points.

Keywords: Parallel systems, membrane computing, stereo matching, symmet-
ric dynamic programming stereo (SDPS).

1 Introduction

Essentially, a P system is a network of data processing cells, abstracting various features
of the nervous system [3, 6, 7, 8, 9, 10]. Each cell transforms input and local symbols
in accord with rewriting rules and sends some of the resulting symbols out, to its close
neighbours. Rules of the same cell can be applied in parallel (if possible) and all cells
work in parallel, in the synchronous mode. The underlying network is a digraph or a
more specialized version, such as a directed acyclic graph (dag) or a tree (which is the
most studied case). Advanced scenarios consider cases when cells or arcs can dynamically
appear, disappear or move.

P systems provide a theoretically efficient testbed for the design of parallel versions
of sequential data processing algorithms, including various image analysis tasks, such
as segmentation [2, 1]. This paper discusses a P system based implementation of the
symmetric dynamic programming stereo (SDPS) [5]. To the best of our knowledge, this
is the first paper that introduces a P system model for stereo matching and it reveals and
separates the inherently parallel and sequential processing stages of the SDPS algorithm.

SDPS searches for the maximal scanline-to-scanline similarity, in explicit or implicit
Cyclopean space of (x, y)-coordinates and d-disparities [5]. The most obvious and “triv-
ial” avenue for parallel implementation of the SDPS is common for all so-called 1D stereo
matching algorithms: similarity between each pair of corresponding scanlines in a rectified
(co-aligned) stereo pair of images can be maximised independently of other pairs. SDPS
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offers an additional parallelisation avenue, exploited in this paper, by computing simi-
larity scores in parallel, for all the disparities associated with each current x-coordinate.
Together, both properties suggest a massively parallel 3D membrane computing frame-
work combining the 2D parallel and 1D sequential forward-backward processing. The
main part of this framework consists of a 3D (x, y, d) uniform array of similar cells, con-
nected each to the near neighbours, along the x-coordinate and d-disparity axes. The
cells are linked to image memory for simultaneous initialisation by embedding image data
into each cell. Fixed data transmission links between the neighbouring cells facilitate the
forward propagation of 2D processing, in parallel along the 3D array, and the backward
trace, required to reconstruct the goal 3D surface, consisting of independently found 2D
cross-sections, or profiles.

2 General P-Model

The basic definition of simple P modules in [3] covers most common P systems, such
as cell-like (based on trees), hyperdag (based on dags), and neural P systems (based
on directed graphs). This definition is further generalised, by introducing new features,
which appear useful for modelling the SDPS.

Definition 1. A simple P module with duplex channels is a system Π = (O,K, δ),
where O is a finite non-empty alphabet of objects; K is a finite set of cells and δ is
an irreflexive binary relation on K, representing a set of structural arcs between cells
(essentially a digraph), with duplex communication capabilities.

Each cell, σi ∈ K, has the initial configuration σi = (Qi, si0, wi0, Ri), and the current
configuration σi = (Qi, si, wi, Ri), where:

• Qi is a finite set of states;

• si0 ∈ Qi is the initial state;

• si ∈ Qi is the current state;

• wi0 ∈ O∗ is the initial content;

• wi ∈ O∗ is the current content;

• Ri is a finite ordered set of multiset rewriting rules of the form: s x→α s
′ x′ (u)βγ ,

where s, s′ ∈ Q, x, x′ ∈ O∗, u ∈ O∗, α ∈ {min, max}, β ∈ {↑, ↓, l}, and γ ∈
{one, spread, repl} ∪K. If u = λ, i.e. the empty multiset of objects, this rule can
be abbreviated as s x→α s

′ x′.

A cell evolves by applying one or more rules, which can change its content and state
and can send objects to its neighbours. For cell σi = (Qi, si, wi, Ri), a rule s x →α

s′ x′ (u)βγ ∈ Ri is applicable if s = si and x ⊆ wi. The application of a rule takes two
sub-steps, after which the cell’s current state s is replaced by target state s′, the current
content x is replaced by x′, and multiset u is sent as specified by the transfer operator
βγ (as further described below). The rules are applied in the weak priority order [9],
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i.e. the higher priority applicable rules are applied before the lower priority ones, and a
lower priority applicable rule is applied only if it indicates the same target state as the
previously applied rules.

In this paper, we use the rewriting operators α = min, max, and the transfer operators
βγ =↓repl, ↓j, ↑j, where σj ∈ K. The rewriting operators α = min and α = max indicate
that an applicable rewriting rule of Ri is applied once or as many times as possible,
respectively. Multisets u represent messages, sent to digraph neighbours, up and/or
down structural arcs, according to the βγ operators. If the right-hand side of the rule
contains (u)↓repl , then, for each application of this rule, a copy of multiset u is sent to each
cell in δ(i) (i.e. to each structural child of σi). If the right-hand side of the rule contains
(u)↓j , then, for each application of this rule, a copy of multiset u is sent to cell σj ∈ K,
if j ∈ δ(i) (i.e. if σj is a structural child of σi). However, if j 6∈ δ(i), then message u
is silently lost. Similarly, if the right-hand side of the rule contains (u)↑j , then, for each
application of this rule, a copy of multiset u is sent to cell σj ∈ K, if j ∈ δ−1(i) (i.e. if
σj is a structural parent of σi); otherwise, if j 6∈ δ−1(i), then message u is silently lost.
Other (not used in this paper) operators are described in [4].

The above definition allows each cell to have its own state and rule sets. However,
we prefer scenarios when all the cells share the same state and rule set; differing only by
their initial content and their neighbourhood relations. Intuitively, such cells are created
identical, by a virtual “cell factory” and initialised to the same quiescent state, typically
designated as s0. A state is called quiescent if no rules can be applied for empty cells
in this state (i.e. an empty quiescent cell does not evolve until some object appeared in
this cell, e.g. was sent from this cells’ neighbours). Then, the cells are allocated different
positions in the structural digraph and possibly initialised with different contents.

2.0.1 Extensions.

We extend the basic simple P-module concept with the following three features, which
are needed in complex scenarios, such as the SDPS algorithm.

1. Arcs can have labels to be used in transfer operators, instead of cell labels. For
example, if k is the label of an outgoing arc (σi, σj) ∈ δ, the occurrence of (u)↓k in
the right-hand side of a rule indicates that message u is to be sent from cell σi to
cell σj. Although not globally unique, arc labels are locally unique, i.e. unique in
each local neighbourhood.

2. A rule can send several messages (not just one), each one to a different neighbour,
e.g. the occurrence of (u)↓k(u

′)↓k′ in the right-hand side of a rule indicates that
messages u, u′ are to be sent via arcs labelled k, k′, respectively.

3. A pair of neighbouring nodes can be connected by several labelled arcs (not just
one), i.e. the supporting structural digraph becomes a multigraph, with labelled
arcs.
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Figure 1: Example of a simple P-module, based on a multigraph with labelled arcs.

These extensions typically support scaling up the problem size, without increasing
the alphabet size or the number of the rules, as several cells can reuse the same labels
for their outgoing arcs.

Example 2. Consider a simple P module Π, with four cells, σ1, σ2, σ3, σ4, sharing the
same three states, s0 (initial state), s1, s2, and the same ordered set of four rules:

1. s0 a→min s1 a
′ (e)↓repl (f)↓u (g)↓v (h)↓w

2. s0 b→max s1 b b
′

3. s0 c→min s2 c
′

4. s0 d→max s1 d
′

Assume that these four cells are arranged in the multigraph structure shown in Fig-
ure 1, where cells σ1 and σ2 are connected by two labelled arcs, and all cells are initially
empty, except cell σ1, which contains the object multiset ab2cd2. In this scenario, all
rules are applicable for cell σ1. First, rule 1 is applied once and sets the target state to
s1. Next, rule 2 is applied twice, not more, because the right-hand side objects b are
produced after all rules are applied. However, rule 3 is not applied, because its right-
hand side indicates a different target state, s2. Finally, rule 4 is applied twice. In the
final configuration of the system, after one step: σ1 is in state s1 and contains multiset
a′b2b′2cd′2; σ2 is in state s0 and contains multiset efg; σ3 is in state s0 and contains
multiset e; σ4 is in state s0 and is empty.

3 SDPS: P system design

3.0.2 Notations.

Given an epipolar stereo pair of rectified images, let C = XY.D be a discrete space of 3D
points p = (x, y, d) of optical (visible) surfaces reduced to the left image plane XY with
integer planar (x, y)-coordinates x ∈ X = {0, 1, . . . , n−1}; y ∈ Y = {0, 1, . . . ,m−1} and
specified by the integer disparities, d ∈ D = {dmin, dmin + 1, . . . , dmax}, of corresponding
points (x, y) and (x− d, y) depicting p in the left and right image, respectively. Each
2D profile relating to a conjugate pair of scanlines with the same y-coordinate is given
by a sequence of points dy = {(x, y, d) : x ∈ X; d ∈ D} such that for each two successive
points (x′, d′) and (x, d) either x = x′ + 1 and d ∈ {d′, d′ + 1} or x = x′ and d = d′ − 1.
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Let g1:y = {g1(x, y) : x = 0, 1, . . . , n− 1} and g2:y = {g2(x, y) : x = 0, 1, . . . , n◦ − 1};
y = 0, 1, . . . ,m− 1, denote grey values along the conjugate scanlines (generally, n 6= n◦).
Let s ∈ {B,M1,M2} indicate visibility of a 3D point, i.e. the binocular, B, or only
monocular observation by the left (M1) or right (M2) sensor. Under an assumed single
continuous surface and the visibility constraints, only the following points (x′, y, d′, s′)
can precede the point (x, y, d, s) along each continuous profile: if s = B or M1 then
x′ = x− 1 and d′ = d for s′ = B or M2 and x′ = x− 1 and d′ = d− 1 if s′ = M1, and if
s = M2 then x′ = x and d′ = d+ 1 for s′ = B or M2.

A simplified version of the SDPS, which does not adapt for possible local contrast
and offset deviations of the corresponding signals, relates the point-wise signal similarity
to the absolute difference δ(x, y, d) = |g1(x, y)− g2(x− d, y)| between the corresponding
signals for the binocularly visible point (x, y, d, B) or a regularising score woccl > 0 for
the monocularly visible ones (see [5] for more detail).

Due to unequal numbers of points in profile variants to be compared by their total
signal similarity, the point-wise similarities ϕy(x, d, s|x′, d′, s′) are integrated between the
successive points with due account of their actual shifts in Cyclopean space:
ϕy(x, d,B|x′, d′, s′) = δ(x, y, d) if s′ ∈ {B,M2} or 0.5δ(x, y, d) if s′ = M1;
ϕy(x, d,M1|x′, d′, s′) = woccl if s′ ∈ {B,M2} or 0.5woccl if s′ = M1 and
ϕy(x, d,M2|x′, d′, s′) = 0.5woccl for s′ ∈ {B,M2}.

3.0.3 SDPS computations.

The SDPS maximises the similarity score between the conjugate scanlines:

d∗y = arg max
dy

Φy(dy) =
∑

i=1,2,...

ϕy(xi, di, si|xi−1, di−1, si−1) (1)

The forward pass computes potentially optimal similarity scores Fy(x, d, s) and back-
ward transitions Ty(x, d, s) for each y ∈ Y by sequential pass along x ∈ X and from dmax

to dmin for each d ∈ D (it can be partly parallel in XD plane):

Fy(x, d, s) = max
(x′,d′,s′)∈Ω(x,d,s)

{Fy(x′, d′.s′) + ϕy(x, d, s|x′, d′, s′)}

Ty(x, d, s) = arg max
(x′,d′,s′)∈Ω(x,d,s)

{Fy(x′, d′, s′) + ϕy(x, d, s|x′, d′, s′)}
(2)

where the sets of back-transitions Ω(x, d, s) follow from the visibility conditions.

The backward pass computes the optimal profiles dy in parallel across y ∈ Y and
sequentially along x ∈ X:

(x∗ = n− 1, d∗, s∗) = arg max(d,s)∈D×S{Fy(n− 1, d, s)}
(x′∗, d∗, s∗) = Ty(x

∗, d∗, s∗) while x′∗ > 0
(3)

where n− 1 is the x-coordinate of the rightmost point of each profile variant.
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3.0.4 Design issues.

Without the loss of generality, the P system has to be designed for a pair of conjugate
scanlines of size n, which arguably is the most challenging parallelisation task. The
solution can be further extended to a stereo pair of images in a straightforward manner,
using “trivial” parallel processing of each pair of conjugate scanlines). We also take
dmin = 0, so the disparities range over the integer interval [0, dmax], and we encode integer
numbers by repeating symbols, starting with one occurrence for zero (as in traditional
λ-calculus), e.g., the base symbol a gives the following encodings: 0→ a, 1→ a2, 2→ a3,
etc). We discuss our solution using the following example:

Example 3. Consider a scenario where n = 6, the occlusion weight woccl = 18, and the
left and right scanlines with the following sequences of pixel values: g1 = {15, 10, 30,
50, 15, 10}; g2 = {10, 30, 50, 50, 15, 10}. The above SDPS algorithm finds the optimal
similarity score = 36 and the profile: d = {(0, 0), (1, 1), (2, 1), (3, 1), (3, 0), (4, 0), (5, 0)},
or d = {0, 1, 1, 1, 0, 0}, for x = {0, 1, 2, 3, 4, 5}.

3.0.5 Cells.

We construct a P system, Π, consisting of the following subcomponents.

• L: a list of cells, σli, i ∈ [0, n− 1], which represent the left scan line, initialized with
the left pixel values, encoded in base x. In our example, these cells are initialized,
in order, with the following multisets: x16, x11, x31, x51, x16, x11.

• R: a list of cells, σri , i ∈ [0, n − 1], which represent the right scan line, initialized
with the right pixel values, encoded in base y. In our example scenario, these cells
are initialized, in order, with the following multisets: y11, y31, y51, y51, y16, y11.

• D: a list of cells, σdi , i ∈ [0, n−1], which represent the disparity line, initially empty.
At the end of our P program, these cells will contain the optimal disparity values,
in base d. In our example, these cells will contain, in order, the following multisets:
d1, d2, d2, d2, d1, d1.

• W : an array of cells, σwij, i ∈ [0, n − 1], j ∈ [0, dmax], which represent the main
workspace. Each cell σij encloses three virtual subcells, respectively holding monocular-
left values (M1), binocular values (B), and monocular-right values (M2). The ini-
tialisation of these cells is described later on, in this section.

• M : a list of cells, σmj , j ∈ [0, dmax], which represent a secondary workspace, which
identifies the optimum (minimal) score, among dmax + 1 possible scores.

Figure 2 (left) shows all these cells, for our example.
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Figure 2: Cells of Π (left) and typical arcs between W -cells (right).

3.0.6 Arcs.

The cells are linked by arcs in a directed acyclic graph (dag) δ, incrementally constructed
by the following enumeration.

• Each L-cell is parent of its corresponding W -column: (σli, σ
w
ij) ∈ δ, i ∈ [0, n − 1],

j ∈ [0, dmax].

• Each R-cell is parent of a corresponding W -diagonal (running S/W to N/E):
(σri , σ

w
iji

) ∈ δ, i ∈ [0, n− 1], ji ∈ [i,max(n, i+ dmax)].

• Each W -cell before the last column and below the top row is parent of the W -cell
in the N/E direction: (σwij, σ

w
i+1j+1) ∈ δ, i ∈ [0, n− 2], j ∈ [0, dmax − 1]. These arcs

are labelled with the same dedicated symbol, a.

• (σwij, σ
w
i+1j) ∈ δ, i ∈ [0, n − 2], j ∈ [0, dmax]. These arc pairs are labelled with the

same dedicated symbols, b and c.

• Each W -cell above the bottom row is twice parent of the W -cell below it (in the S
direction): (σwij, σ

w
ij−1) ∈ δ, i ∈ [0, n − 1], j ∈ [1, dmax]. These arc pairs are labelled

with the same dedicated symbols, d and e.

• Each rightmost column W -cell is parent of its corresponding M -cell: (σwnj, σ
m
j ) ∈ δ,

j ∈ [0, dmax]. These arcs are all labelled with the same dedicated symbol, f .

• All cells in a W -column are parents of their corresponding D-cell: (σwij, σ
d
i ) ∈ δ,

i ∈ [0, n − 1], j ∈ [0, dmax]. These arcs are all labelled with the same dedicated
symbol, g.
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Figure 3: Initialised P system Π.

Even for our simple example, a full picture of all these arcs is impossible, because of
its sheer complexity. However, we can suggest a representative fragment of these arcs.
By highlighting cells that are dag neighbours, Figure 2 (left) suggests the following arcs:
L-cell σl0 is the parent of W -cells σw03, σw02, σw01, σw00; R-cell σr3 is the parent of W -cells σw30,
σw41, σw52; W -cell σw51 is the parent of M -cells σm1 (arcs are labelled f); W -cells σw23, σw22,
σw21, σw20 are parents of D-cell σd2 (arcs are labelled g). Also, Figure 2 (right) shows the
following arcs between W -cells: σ31 is parent of σ42, via arc labelled a; σ31 is twice parent
of σ41, via arcs labelled b and c; σ31 is twice parent of σ30, via arcs labelled d and e.

3.0.7 Workspace initialisation.

Some of the W -cells are initialised as follows.

• Each cell above the first S/W to N/E diagonal, σwij, i ∈ [0, n− 1], j ∈ [i+ 1, dmax],
contains one copy of symbols wl, wb and wr, interpreted as the infinite values of
its monocular-left (M1), binocular (B) and monocular-right (M2) subcells, respec-
tively.

• Each top-row cell, σwidmax
, i ∈ [0, n − 1], contains one copy of symbols wl and wr

(interpreted the same way as above).

• The top-left cell, σw0dmax
, contains one copy of symbol k, which triggers the whole

computation.

Figure 3 shows the initialised P system Π, just before it starts.

3.0.8 Evolution—bird’s eye view.

At a very high level, the system Π evolves in two major phases, closely related to the
above description of the SDPS.
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Figure 4: Final scores of the subcells of the W -cells at the end of the forward pass phase.

First, the forward pass phase proceeds on slope 2 diagonals, starting from the top-
left cell (initially marked with k); all cells on the same diagonal work in parallel. In
our sample scenario, the computational wave moves, in order, over the diagonals {σw03},
{σw02}, {σw01, σ

w
13}, {σw00, σ

w
12}, {σw11, σ

w
23}, {σw10, σ

w
22}, {σw21, σ

w
33}, . . . , {σw40, σ

w
52}, {σw51} and

{σw50}.
During the forward pass, in the general case, each cell σwij determines:

1. in its binocular subcell, a preliminary score, which is the absolute value of the
differences between the pixel values received from σli (left scanline) and σri (right
scanline);

2. in its binocular and monocular-left subcells, the sum between its previous score (cf.
step 1) and the minimum value of those received via: (i) arc a: σwi−1j−1’s monocular-
left score; (ii) arc b: σwi−1j’s binocular score; (iii) arc c: σwi−1j’s monocular-right score;

3. in its monocular-right subcell, the sum between its previous score (cf. step 1) and
the minimum score of those received via: (i) arc d: σwij+1’s binocular score; (ii) arc
e: σwij+1’s monocular-right score.

Figure 4 shows the final scores of the subcells of the W -cells at the end of the
forward pass phase.

Additionally, each W -cell keeps pointers to the origin of the minimum received scores,
i.e., the label of the corresponding via arc (a, b, c, d, e), which will be used in the backward
pass phase. These pointers are shown in Figure 5. When the wave reaches the rightmost
column of W , the final scores are sent to the corresponding M -cells. These evaluate
the minimum score and triggers the backward pass, which essentially follows back the
pointers stored in the forward pass, during the evaluation of the minimum score. W -cells
traversed during the backward pass send their disparity positions to the corresponding D-
cells, which in the end return the problem’s solution. Figure 5 shows the backward pass
traversal using the backward pointers, and the disparity values in D-cells.

3.0.9 Rules

All cells start in the same initial quiescent state s0 and they share the same ruleset,
applied in weak priority order [9]. Later, cells begin to differentiate, by entering different
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Figure 5: The backward pass traversal and final values of D-cells.

states (according to their contents), which implicitly partitions the initial ruleset. We
outline the full ruleset by dividing it into logical fragments. Each rules fragment will be

introduced by one or more expressions of type s
X:k
=⇒ s′, indicating a set of rules which

transform the state of X cells, from s into s′, in k P steps.

s0
L,R:1
=⇒ s99, s0

W,M,D:1
=⇒ s1. L-cells and R-cells transfer their pixel values to their

corresponding W children cells and transit to state s99; all other cells, i.e. W , M and D,
transit to state s1; everything in one P step.

1. s0 x→max s99 x (lb)↓

2. s0 y →max s99 y (rb)↓

3. s0 →min s1

s1
W :2
=⇒ s4, s1

M,D:1
=⇒ s27. Each W -cell computes the absolute value of the differences

between the received left and right pixel values and transits to state s4, in four P steps.
Each other cell, i.e. M and D, transits to state s27, in one P step.

1. s1 wb →min s2 wb

2. s1 lb rb →min s3 zb

3. s1 lb rb →max s3

4. s1 lb →max s3 zb

5. s1 rb →max s3 zb

6. s1 lb →max s2

7. s1 rb →max s2

8. s1 →min s27

9. s2 →min s4

10. s3 →min s4

s4

σw0dmax
:2

=⇒ s7, s4

W\σw0dmax
:1+···+1

=⇒ s8. The top-left W -cell, σw0dmax
, which contains the

initial trigger symbol k, triggers the forward phase and transits to s7, in two P steps; all
other W -cells linger into a intermediary quiescent state, s6, until symbol k is received,
and then transit to s8, in two plus an unspecified number of P steps.

1. s4 k →min s5 k

2. s4 →min s6

3. s5 ol →max s7 ul

4. s5 or →max s7 ur

10



5. s5 zb →max s7 zb

6. s5 →min s7

7. s6 k →min s8 k

s7
Wk:1
=⇒ s26. W -cells containing trigger symbol k transfer values to their neighbouring

cells, via arcs a, b, c, d, e; trigger symbol k is also transferred, via arcs a and d (this is
enough to ensure the proper forward pass workflow).

1. s7 k →min s26 (k)↓a (k)↓d

2. s7 k →max s26

3. s7 ul →max s26 ul (a)↓a

4. s7 ub →max s26 ub (b)↓b (d)↓d

5. s7 ur →max s26 ur (c)↓c (e)↓e

6. s7 wl →min s26 wl (wa)↓a

7. s7 wb →min s26 wb (wb)↓b (wd)↓d

8. s7 wr →min s26 wr (wc)↓c (we)↓e

s8
W :3
=⇒ s12. W -cells compute the minimum value of those received via arcs d and e,

storing the proper backward pointer, pd or pe.

1. s8 w
d we →min s10 w

d E

2. s8 w
d →min s9 D

3. s8 w
e →min s9 E

4. s8 d e→max s10 i

5. s8 d→min s10 D

6. s8 d→max s10

7. s8 e→min s10 E

8. s8 e→max s10

9. s8 →min s10

10. s9 d→max s11 i

11. s9 e→max s11 i

12. s10 →min s11

13. s11 D E →min s12 pd

14. s11 D →min s12 pe

15. s11 E →min s12 pd

16. s11 →min s12

s12
W :4
=⇒ s19. W -cells compute the minimum value of those received via arcs a, b and

c, storing the proper backward pointer, pa, pb or pc.

1. s12 w
a wb wc →min s16 w

b A C

2. s12 w
a →min s13 A

3. s12 w
b →min s13 B

4. s12 w
c →min s13 C

5. s12 a b c→max s16 j

6. s12 →min s13

7. s12 a→min s16 A

8. s12 a→max s16

9. s12 b→min s16 B

10. s12 b→max s16

11. s12 c→min s16 C

12. s12 c→max s16

13. s13 a b→max s14 j

14. s13 b c→max s14 j
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15. s13 a→max s15 j

16. s13 b→max s15 j

17. s13 c→max s15 j

18. s13 a→min s14 A

19. s13 a→max s14

20. s13 b→min s14 B

21. s13 b→max s14

22. s13 c→min s14 C

23. s13 c→max s14

24. s13 →min s14

25. s14 →min s17

26. s15 →min s17

27. s16 →min s17

28. s17 →min s18

29. s18 A B C →min s19 pa

30. s18 A B →min s19 pc

31. s18 A C →min s19 pb

32. s18 B C →min s19 pa

33. s18 A→min s19 pb

34. s18 B →min s19 pa

35. s18 C →min s19 pb

36. s18 →min s19

s19
W :5
=⇒ s7. Each W -cell calculates the sum between its previous score (the absolute

value of pixel values differences) and the selected minimum values from the previous
stages. The outgoing state at this stage is s7, which allows the cells to apply the rules
to transfer values to neighbours in subsequent steps. Table 1 shows the traces of the
forward pass phase of the first three and last three diagonals of the W -cells.

1. s19 w
b →min s20 wl wb

2. s19 wl →min s20 wl

3. s19 wb →min s20 wb

4. s19 ol →min s21

5. s19 zb →min s21

6. s19 j →min s21

7. s19 ol →max s21ul

8. s19 zb →max s21ub

9. s19 j →max s21ul ub

10. s19 →min s21ul

11. s19 →min s21ub

12. s20 wl wl →min s22 wl

13. s20 wb wb →min s22 wb

14. s20 ol →max s22

15. s20 zb →max s22

16. s20 →min s22

17. s21 →min s22

18. s22 wd →min s23 wr

19. s22 or →min s24 or

20. s22 i→min s24 i

21. s22 →min s23

22. s23 wr wr →min s25 wr

23. s23 or →max s25

24. s23 →min s25

12



25. s24 or →min s25

26. s24 i→min s25

27. s24 or →max s25 ur

28. s24 i→max s25 ur

29. s24 →min s25 ur

30. s25 →min s7

s26
W :1
=⇒ s98. Recall that W -cells transit to s26 upon transferring their values to

neighbouring cells (see rules for s7). At s26, each W -cell transits to a quiescent state, s98,
where it waits for the backward pass phase. If an arc labelled f is available, i.e. if the
cell is in the rightmost W-column, the cell transfers its current values, monocular left,
binocular and monocular right, to its corresponding M -cell.

1. s26 ul →max s98 ul (ul)↓f

2. s26 ub →max s98 ub (ub)↓f

3. s26 ur →max s98 ur (ur)↓f

4. s26 wl →min s98 wl (wl)↓f

5. s26 wb →min s98 wb (wb)↓f

6. s26 wr →min s98 wr (wr)↓f

s27
M :11
=⇒ s40. M -cells determine the overall minimum of all the values received via

arcs f .

1. s27 wr →min s28 wr

2. s27 n→min s28 n (h)↑h

3. s28 ul ub ur →max s29 m

4. s28 ub →min s30 m L R N

5. s28 ub →max s30 m

6. s29 ul →min s31 L

7. s29 ub →min s31 B

8. s29 ur →min s31 R

9. s29 ul →max s31

10. s29 ub →max s31

11. s29 ur →max s31

12. s30 m→max s33 q

13. s31 m n→max s32 q

14. s32 m→min s33 M

15. s32 n→min s33 N

16. s32 m→max s33

17. s32 n→max s33

18. s33 q →max s34 q (n)↓h

19. s34 →min s35

20. s35 h→min s36 h

21. s35 →min s37 f

22. s36 f →min s37 f

23. s37 M →min s38 f

24. s37 N →min s39 N

25. s38 f →max s99 (f)↓h

26. s39 L B →min s40 r

27. s39 L R→min s40 b

28. s39 B R→min s40 l

29. s39 L→min s40 b

30. s39 B →min s40 r

31. s39 R→min s40 b

13



s40
M :1
=⇒ s99. The disparity at the minimum value is then transferred to the W -cell

where the minimum value originated from. Symbols f trigger the backward pass phase.

1. s40 l→min s99 l (l)↑f

2. s40 b→min s99 b (b)↑f

3. s40 r →min s99 r (r)↑f

4. s40 f →max s99 f (f)↑f

s98
W :1
=⇒ s41. W -cells are activated by (at least) one symbol f and transit to s41.

1. s98 f →min s41 f

s41
W :3
=⇒ s99. This is the backward pass, along the selected optimal backward path.

Each current W -cell on this path uses its backward pointers, stored during the forward
pass (see rule fragments starting from states s8 and s12), to activate the preceding optimal
W -cell, in the backwards sense. At the same time, the current cell sends its disparity
position to its corresponding D-cell, via arc g.

1. s41 l→min s42 l

2. s41 b→min s42 b

3. s41 r →min s43 r

4. s41 f →max s42 f (d)↓g

5. s42 pa f →min s44 pa (l)↓a

6. s42 pb →min s45 pb (b)↓b

7. s42 pc →min s46 pc (r)↓c

8. s43 pd →min s47 pd f (b)↓d

9. s43 pe →min s48 pe f (r)↓e

10. s44 f →max s99 (f)↓a

11. s45 f →max s99 (f)↓b

12. s46 f →max s99 (f)↓c

13. s47 f →max s99 (f)↓d

14. s48 f →max s99 (f)↓e

3.0.10 Runtime complexity.

The asymptotic runtime complexity of our P model, which is arguably optimal, is sum-
marized by Theorem 4. The proof follows from the structure and their execution of the
above rules in the P system. In contrast, the best implementation on existing parallel
hardware is limited by O(nd/q), where q is the number of available processors.

Theorem 4. The P system described in Section 3 completes in O(n+ d) P steps.

14



4 Conclusion

In this paper, we presented a massively parallel P-model for implementing a critical part
of the SDPS algorithm. Our solution is based on simple P-modules, with extensions
which allow our model to adapt to complex cases such as SDPS. Our model processes
in parallel all potentially optimal similarity scores that trace candidate decisions, for all
the disparities associated with each current x-coordinate. We plan to further extend the
solution, from pairs of scanlines to stereo pairs of full images. To avoid complex and
lengthy arguments, in this paper we did not discuss how all the cells have been created
and initialised. We also plan to investigate an advanced model, which starts as one single
“ur-cell” and then grows, until it reaches the proper size and shape, required by the SDPS
solution.
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