Newer versions of Bash support one-dimensional arrays. Array elements may be initialized with the variable[xx] notation. Alternatively, a script may introduce the entire array by an explicit declare -a variable statement. To dereference (find the contents of) an array element, use curly bracket notation, that is, ${variable[xx]}.
Example 26-1. Simple array usage
1 #!/bin/bash 2 3 4 area[11]=23 5 area[13]=37 6 area[51]=UFOs 7 8 # Array members need not be consecutive or contiguous. 9 10 # Some members of the array can be left uninitialized. 11 # Gaps in the array are o.k. 12 13 14 echo -n "area[11] = " 15 echo ${area[11]} # {curly brackets} needed 16 17 echo -n "area[13] = " 18 echo ${area[13]} 19 20 echo "Contents of area[51] are ${area[51]}." 21 22 # Contents of uninitialized array variable print blank. 23 echo -n "area[43] = " 24 echo ${area[43]} 25 echo "(area[43] unassigned)" 26 27 echo 28 29 # Sum of two array variables assigned to third 30 area[5]=`expr ${area[11]} + ${area[13]}` 31 echo "area[5] = area[11] + area[13]" 32 echo -n "area[5] = " 33 echo ${area[5]} 34 35 area[6]=`expr ${area[11]} + ${area[51]}` 36 echo "area[6] = area[11] + area[51]" 37 echo -n "area[6] = " 38 echo ${area[6]} 39 # This fails because adding an integer to a string is not permitted. 40 41 echo; echo; echo 42 43 # ----------------------------------------------------------------- 44 # Another array, "area2". 45 # Another way of assigning array variables... 46 # array_name=( XXX YYY ZZZ ... ) 47 48 area2=( zero one two three four ) 49 50 echo -n "area2[0] = " 51 echo ${area2[0]} 52 # Aha, zero-based indexing (first element of array is [0], not [1]). 53 54 echo -n "area2[1] = " 55 echo ${area2[1]} # [1] is second element of array. 56 # ----------------------------------------------------------------- 57 58 echo; echo; echo 59 60 # ----------------------------------------------- 61 # Yet another array, "area3". 62 # Yet another way of assigning array variables... 63 # array_name=([xx]=XXX [yy]=YYY ...) 64 65 area3=([17]=seventeen [24]=twenty-four) 66 67 echo -n "area3[17] = " 68 echo ${area3[17]} 69 70 echo -n "area3[24] = " 71 echo ${area3[24]} 72 # ----------------------------------------------- 73 74 exit 0 |
Bash permits array operations on variables, even if the variables are not explicitly declared as arrays.
|
Example 26-2. Formatting a poem
1 #!/bin/bash 2 # poem.sh 3 4 # Lines of the poem (single stanza). 5 Line[1]="I do not know which to prefer," 6 Line[2]="The beauty of inflections" 7 Line[3]="Or the beauty of innuendoes," 8 Line[4]="The blackbird whistling" 9 Line[5]="Or just after." 10 11 # Attribution. 12 Attrib[1]=" Wallace Stevens" 13 Attrib[2]="\"Thirteen Ways of Looking at a Blackbird\"" 14 15 for index in 1 2 3 4 5 # Five lines. 16 do 17 printf " %s\n" "${Line[index]}" 18 done 19 20 for index in 1 2 # Two attribution lines. 21 do 22 printf " %s\n" "${Attrib[index]}" 23 done 24 25 exit 0 |
Array variables have a syntax all their own, and even standard Bash commands and operators have special options adapted for array use.
1 array=( zero one two three four five ) 2 3 echo ${array[0]} # zero 4 echo ${array:0} # zero 5 # Parameter expansion of first element. 6 echo ${array:1} # ero 7 # Parameter expansion of first element, 8 #+ starting at position #1 (2nd character). 9 10 echo ${#array} # 4 11 # Length of first element of array. 12 13 14 15 array2=( [0]="first element" [1]="second element" [3]="fourth element" ) 16 17 echo ${array2[0]} # first element 18 echo ${array2[1]} # second element 19 echo ${array2[2]} # 20 # Skipped in initialization, therefore null. 21 echo ${array2[3]} # fourth element |
In an array context, some Bash builtins have a slightly altered meaning. For example, unset deletes array elements, or even an entire array.
Example 26-3. Some special properties of arrays
1 #!/bin/bash 2 3 declare -a colors 4 # Permits declaring an array without specifying its size. 5 6 echo "Enter your favorite colors (separated from each other by a space)." 7 8 read -a colors # Enter at least 3 colors to demonstrate features below. 9 # Special option to 'read' command, 10 #+ allowing assignment of elements in an array. 11 12 echo 13 14 element_count=${#colors[@]} 15 # Special syntax to extract number of elements in array. 16 # element_count=${#colors[*]} works also. 17 # 18 # The "@" variable allows word splitting within quotes 19 #+ (extracts variables separated by whitespace). 20 21 index=0 22 23 while [ "$index" -lt "$element_count" ] 24 do # List all the elements in the array. 25 echo ${colors[$index]} 26 let "index = $index + 1" 27 done 28 # Each array element listed on a separate line. 29 # If this is not desired, use echo -n "${colors[$index]} " 30 # 31 # Doing it with a "for" loop instead: 32 # for i in "${colors[@]}" 33 # do 34 # echo "$i" 35 # done 36 # (Thanks, S.C.) 37 38 echo 39 40 # Again, list all the elements in the array, but using a more elegant method. 41 echo ${colors[@]} # echo ${colors[*]} also works. 42 43 echo 44 45 # The "unset" command deletes elements of an array, or entire array. 46 unset colors[1] # Remove 2nd element of array. 47 # Same effect as colors[1]= 48 echo ${colors[@]} # List array again, missing 2nd element. 49 50 unset colors # Delete entire array. 51 # unset colors[*] and 52 #+ unset colors[@] also work. 53 echo; echo -n "Colors gone." 54 echo ${colors[@]} # List array again, now empty. 55 56 exit 0 |
As seen in the previous example, either ${array_name[@]} or ${array_name[*]} refers to all the elements of the array. Similarly, to get a count of the number of elements in an array, use either ${#array_name[@]} or ${#array_name[*]}. ${#array_name} is the length (number of characters) of ${array_name[0]}, the first element of the array.
Example 26-4. Of empty arrays and empty elements
1 #!/bin/bash 2 # empty-array.sh 3 4 # Thanks to Stephane Chazelas for the original example, 5 #+ and to Michael Zick for extending it. 6 7 8 # An empty array is not the same as an array with empty elements. 9 10 array0=( first second third ) 11 array1=( '' ) # "array1" has one empty element. 12 array2=( ) # No elements... "array2" is empty. 13 14 echo 15 ListArray() 16 { 17 echo 18 echo "Elements in array0: ${array0[@]}" 19 echo "Elements in array1: ${array1[@]}" 20 echo "Elements in array2: ${array2[@]}" 21 echo 22 echo "Length of first element in array0 = ${#array0}" 23 echo "Length of first element in array1 = ${#array1}" 24 echo "Length of first element in array2 = ${#array2}" 25 echo 26 echo "Number of elements in array0 = ${#array0[*]}" # 3 27 echo "Number of elements in array1 = ${#array1[*]}" # 1 (surprise!) 28 echo "Number of elements in array2 = ${#array2[*]}" # 0 29 } 30 31 # =================================================================== 32 33 ListArray 34 35 # Try extending those arrays 36 37 # Adding an element to an array. 38 array0=( "${array0[@]}" "new1" ) 39 array1=( "${array1[@]}" "new1" ) 40 array2=( "${array2[@]}" "new1" ) 41 42 ListArray 43 44 # or 45 array0[${#array0[*]}]="new2" 46 array1[${#array1[*]}]="new2" 47 array2[${#array2[*]}]="new2" 48 49 ListArray 50 51 # When extended as above; arrays are 'stacks' 52 # The above is the 'push' 53 # The stack 'height' is: 54 height=${#array2[@]} 55 echo 56 echo "Stack height for array2 = $height" 57 58 # The 'pop' is: 59 unset array2[${#array2[@]}-1] # Arrays are zero based 60 height=${#array2[@]} 61 echo 62 echo "POP" 63 echo "New stack height for array2 = $height" 64 65 ListArray 66 67 # List only 2nd and 3rd elements of array0 68 from=1 # Zero based numbering 69 to=2 # 70 declare -a array3=( ${array0[@]:1:2} ) 71 echo 72 echo "Elements in array3: ${array3[@]}" 73 74 # Works like a string (array of characters) 75 # Try some other "string" forms 76 77 # Replacement 78 declare -a array4=( ${array0[@]/second/2nd} ) 79 echo 80 echo "Elements in array4: ${array4[@]}" 81 82 # Replace all matching wildcarded string 83 declare -a array5=( ${array0[@]//new?/old} ) 84 echo 85 echo "Elements in array5: ${array5[@]}" 86 87 # Just when you are getting the feel for this... 88 declare -a array6=( ${array0[@]#*new} ) 89 echo # This one might surprise you 90 echo "Elements in array6: ${array6[@]}" 91 92 declare -a array7=( ${array0[@]#new1} ) 93 echo # After array6 this should not be a surprise 94 echo "Elements in array7: ${array7[@]}" 95 96 # Which looks a lot like... 97 declare -a array8=( ${array0[@]/new1/} ) 98 echo 99 echo "Elements in array8: ${array8[@]}" 100 101 # So what can one say about this? 102 103 # The string operations are performed on 104 #+ each of the elements in var[@] in succession. 105 # Therefore : BASH supports string vector operations 106 # If the result is a zero length string, that 107 #+ element disappears in the resulting assignment. 108 109 # Question, are those strings hard or soft quotes? 110 111 zap='new*' 112 declare -a array9=( ${array0[@]/$zap/} ) 113 echo 114 echo "Elements in array9: ${array9[@]}" 115 116 # Just when you thought you where still in Kansas... 117 declare -a array10=( ${array0[@]#$zap} ) 118 echo 119 echo "Elements in array10: ${array10[@]}" 120 121 # Compare array7 with array10 122 # Compare array8 with array9 123 124 # Answer, must be soft quotes. 125 126 exit 0 |
The relationship of ${array_name[@]} and ${array_name[*]} is analogous to that between $@ and $*. This powerful array notation has a number of uses.
1 # Copying an array. 2 array2=( "${array1[@]}" ) 3 # or 4 array2="${array1[@]}" 5 6 # Adding an element to an array. 7 array=( "${array[@]}" "new element" ) 8 # or 9 array[${#array[*]}]="new element" 10 11 # Thanks, S.C. |
The array=( element1 element2 ... elementN ) initialization operation, with the help of command substitution, makes it possible to load the contents of a text file into an array.
|
Clever scripting makes it possible to add array operations.
Example 26-5. Copying and concatenating arrays
1 #! /bin/bash 2 # CopyArray.sh 3 # 4 # This script written by Michael Zick. 5 # Used here with permission. 6 7 # How-To "Pass by Name & Return by Name" 8 #+ or "Building your own assignment statement". 9 10 11 CpArray_Mac() { 12 13 # Assignment Command Statement Builder 14 15 echo -n 'eval ' 16 echo -n "$2" # Destination name 17 echo -n '=( ${' 18 echo -n "$1" # Source name 19 echo -n '[@]} )' 20 21 # That could all be a single command. 22 # Matter of style only. 23 } 24 25 declare -f CopyArray # Function "Pointer" 26 CopyArray=CpArray_Mac # Statement Builder 27 28 Hype() 29 { 30 31 # Hype the array named $1. 32 # (Splice it together with array containing "Really Rocks".) 33 # Return in array named $2. 34 35 local -a TMP 36 local -a hype=( Really Rocks ) 37 38 $($CopyArray $1 TMP) 39 TMP=( ${TMP[@]} ${hype[@]} ) 40 $($CopyArray TMP $2) 41 } 42 43 declare -a before=( Advanced Bash Scripting ) 44 declare -a after 45 46 echo "Array Before = ${before[@]}" 47 48 Hype before after 49 50 echo "Array After = ${after[@]}" 51 52 # Too much hype? 53 54 echo "What ${after[@]:3:2}?" 55 56 declare -a modest=( ${after[@]:2:1} ${after[@]:3:2} ) 57 # ---- substring extraction ---- 58 59 echo "Array Modest = ${modest[@]}" 60 61 # What happened to 'before' ? 62 63 echo "Array Before = ${before[@]}" 64 65 exit 0 |
--
Arrays permit deploying old familiar algorithms as shell scripts. Whether this is necessarily a good idea is left to the reader to decide.
Example 26-6. An old friend: The Bubble Sort
1 #!/bin/bash 2 # bubble.sh: Bubble sort, of sorts. 3 4 # Recall the algorithm for a bubble sort. In this particular version... 5 6 # With each successive pass through the array to be sorted, 7 #+ compare two adjacent elements, and swap them if out of order. 8 # At the end of the first pass, the "heaviest" element has sunk to bottom. 9 # At the end of the second pass, the next "heaviest" one has sunk next to bottom. 10 # And so forth. 11 # This means that each successive pass needs to traverse less of the array. 12 # You will therefore notice a speeding up in the printing of the later passes. 13 14 15 exchange() 16 { 17 # Swaps two members of the array. 18 local temp=${Countries[$1]} # Temporary storage 19 #+ for element getting swapped out. 20 Countries[$1]=${Countries[$2]} 21 Countries[$2]=$temp 22 23 return 24 } 25 26 declare -a Countries # Declare array, 27 #+ optional here since it's initialized below. 28 29 # Is it permissable to split an array variable over multiple lines 30 #+ using an escape (\)? 31 # Yes. 32 33 Countries=(Netherlands Ukraine Zaire Turkey Russia Yemen Syria \ 34 Brazil Argentina Nicaragua Japan Mexico Venezuela Greece England \ 35 Israel Peru Canada Oman Denmark Wales France Kenya \ 36 Xanadu Qatar Liechtenstein Hungary) 37 38 # "Xanadu" is the mythical place where, according to Coleridge, 39 #+ Kubla Khan did a pleasure dome decree. 40 41 42 clear # Clear the screen to start with. 43 44 echo "0: ${Countries[*]}" # List entire array at pass 0. 45 46 number_of_elements=${#Countries[@]} 47 let "comparisons = $number_of_elements - 1" 48 49 count=1 # Pass number. 50 51 while [ "$comparisons" -gt 0 ] # Beginning of outer loop 52 do 53 54 index=0 # Reset index to start of array after each pass. 55 56 while [ "$index" -lt "$comparisons" ] # Beginning of inner loop 57 do 58 if [ ${Countries[$index]} \> ${Countries[`expr $index + 1`]} ] 59 # If out of order... 60 # Recalling that \> is ASCII comparison operator 61 #+ within single brackets. 62 63 # if [[ ${Countries[$index]} > ${Countries[`expr $index + 1`]} ]] 64 #+ also works. 65 then 66 exchange $index `expr $index + 1` # Swap. 67 fi 68 let "index += 1" 69 done # End of inner loop 70 71 72 let "comparisons -= 1" # Since "heaviest" element bubbles to bottom, 73 #+ we need do one less comparison each pass. 74 75 echo 76 echo "$count: ${Countries[@]}" # Print resultant array at end of each pass. 77 echo 78 let "count += 1" # Increment pass count. 79 80 done # End of outer loop 81 # All done. 82 83 exit 0 |
--
Is it possible to nest arrays within arrays?
1 #!/bin/bash 2 # Nested array. 3 4 # Michael Zick provided this example. 5 6 AnArray=( $(ls --inode --ignore-backups --almost-all \ 7 --directory --full-time --color=none --time=status \ 8 --sort=time -l ${PWD} ) ) # Commands and options. 9 10 # Spaces are significant . . . and don't quote anything in the above. 11 12 SubArray=( ${AnArray[@]:11:1} ${AnArray[@]:6:5} ) 13 # Array has two elements, each of which is in turn an array. 14 15 echo "Current directory and date of last status change:" 16 echo "${SubArray[@]}" 17 18 exit 0 |
--
Embedded arrays in combination with indirect references create some fascinating possibilities
Example 26-7. Embedded arrays and indirect references
1 #!/bin/bash 2 # embedded-arrays.sh 3 # Embedded arrays and indirect references. 4 5 # This script by Dennis Leeuw. 6 # Used with permission. 7 # Modified by document author. 8 9 10 ARRAY1=( 11 VAR1_1=value11 12 VAR1_2=value12 13 VAR1_3=value13 14 ) 15 16 ARRAY2=( 17 VARIABLE="test" 18 STRING="VAR1=value1 VAR2=value2 VAR3=value3" 19 ARRAY21=${ARRAY1[*]} 20 ) # Embed ARRAY1 within this second array. 21 22 function print () { 23 OLD_IFS="$IFS" 24 IFS=$'\n' # To print each array element 25 #+ on a separate line. 26 TEST1="ARRAY2[*]" 27 local ${!TEST1} # See what happens if you delete this line. 28 # Indirect reference. 29 # This makes the components of $TEST1 30 #+ accessible to this function. 31 32 33 # Let's see what we've got so far. 34 echo 35 echo "\$TEST1 = $TEST1" # Just the name of the variable. 36 echo; echo 37 echo "{\$TEST1} = ${!TEST1}" # Contents of the variable. 38 # That's what an indirect 39 #+ reference does. 40 echo 41 echo "-------------------------------------------"; echo 42 echo 43 44 45 # Print variable 46 echo "Variable VARIABLE: $VARIABLE" 47 48 # Print a string element 49 IFS="$OLD_IFS" 50 TEST2="STRING[*]" 51 local ${!TEST2} # Indirect reference (as above). 52 echo "String element VAR2: $VAR2 from STRING" 53 54 # Print an array element 55 TEST2="ARRAY21[*]" 56 local ${!TEST2} # Indirect reference (as above). 57 echo "Array element VAR1_1: $VAR1_1 from ARRAY21" 58 } 59 60 print 61 echo 62 63 exit 0 64 65 # As the author of the script notes, 66 #+ "you can easily expand it to create named-hashes in bash." 67 # (Difficult) exercise for the reader: implement this. |
--
Arrays enable implementing a shell script version of the Sieve of Eratosthenes. Of course, a resource-intensive application of this nature should really be written in a compiled language, such as C. It runs excruciatingly slowly as a script.
Example 26-8. Complex array application: Sieve of Eratosthenes
1 #!/bin/bash 2 # sieve.sh 3 4 # Sieve of Eratosthenes 5 # Ancient algorithm for finding prime numbers. 6 7 # This runs a couple of orders of magnitude 8 # slower than the equivalent C program. 9 10 LOWER_LIMIT=1 # Starting with 1. 11 UPPER_LIMIT=1000 # Up to 1000. 12 # (You may set this higher... if you have time on your hands.) 13 14 PRIME=1 15 NON_PRIME=0 16 17 let SPLIT=UPPER_LIMIT/2 18 # Optimization: 19 # Need to test numbers only halfway to upper limit. 20 21 22 declare -a Primes 23 # Primes[] is an array. 24 25 26 initialize () 27 { 28 # Initialize the array. 29 30 i=$LOWER_LIMIT 31 until [ "$i" -gt "$UPPER_LIMIT" ] 32 do 33 Primes[i]=$PRIME 34 let "i += 1" 35 done 36 # Assume all array members guilty (prime) 37 # until proven innocent. 38 } 39 40 print_primes () 41 { 42 # Print out the members of the Primes[] array tagged as prime. 43 44 i=$LOWER_LIMIT 45 46 until [ "$i" -gt "$UPPER_LIMIT" ] 47 do 48 49 if [ "${Primes[i]}" -eq "$PRIME" ] 50 then 51 printf "%8d" $i 52 # 8 spaces per number gives nice, even columns. 53 fi 54 55 let "i += 1" 56 57 done 58 59 } 60 61 sift () # Sift out the non-primes. 62 { 63 64 let i=$LOWER_LIMIT+1 65 # We know 1 is prime, so let's start with 2. 66 67 until [ "$i" -gt "$UPPER_LIMIT" ] 68 do 69 70 if [ "${Primes[i]}" -eq "$PRIME" ] 71 # Don't bother sieving numbers already sieved (tagged as non-prime). 72 then 73 74 t=$i 75 76 while [ "$t" -le "$UPPER_LIMIT" ] 77 do 78 let "t += $i " 79 Primes[t]=$NON_PRIME 80 # Tag as non-prime all multiples. 81 done 82 83 fi 84 85 let "i += 1" 86 done 87 88 89 } 90 91 92 # Invoke the functions sequentially. 93 initialize 94 sift 95 print_primes 96 # This is what they call structured programming. 97 98 echo 99 100 exit 0 101 102 103 104 # ----------------------------------------------- # 105 # Code below line will not execute. 106 107 # This improved version of the Sieve, by Stephane Chazelas, 108 # executes somewhat faster. 109 110 # Must invoke with command-line argument (limit of primes). 111 112 UPPER_LIMIT=$1 # From command line. 113 let SPLIT=UPPER_LIMIT/2 # Halfway to max number. 114 115 Primes=( '' $(seq $UPPER_LIMIT) ) 116 117 i=1 118 until (( ( i += 1 ) > SPLIT )) # Need check only halfway. 119 do 120 if [[ -n $Primes[i] ]] 121 then 122 t=$i 123 until (( ( t += i ) > UPPER_LIMIT )) 124 do 125 Primes[t]= 126 done 127 fi 128 done 129 echo ${Primes[*]} 130 131 exit 0 |
Compare this array-based prime number generator with an alternative that does not use arrays, Example A-17.
--
Arrays lend themselves, to some extent, to emulating data structures for which Bash has no native support.
Example 26-9. Emulating a push-down stack
1 #!/bin/bash 2 # stack.sh: push-down stack simulation 3 4 # Similar to the CPU stack, a push-down stack stores data items 5 #+ sequentially, but releases them in reverse order, last-in first-out. 6 7 BP=100 # Base Pointer of stack array. 8 # Begin at element 100. 9 10 SP=$BP # Stack Pointer. 11 # Initialize it to "base" (bottom) of stack. 12 13 Data= # Contents of stack location. 14 # Must use local variable, 15 #+ because of limitation on function return range. 16 17 declare -a stack 18 19 20 push() # Push item on stack. 21 { 22 if [ -z "$1" ] # Nothing to push? 23 then 24 return 25 fi 26 27 let "SP -= 1" # Bump stack pointer. 28 stack[$SP]=$1 29 30 return 31 } 32 33 pop() # Pop item off stack. 34 { 35 Data= # Empty out data item. 36 37 if [ "$SP" -eq "$BP" ] # Stack empty? 38 then 39 return 40 fi # This also keeps SP from getting past 100, 41 #+ i.e., prevents a runaway stack. 42 43 Data=${stack[$SP]} 44 let "SP += 1" # Bump stack pointer. 45 return 46 } 47 48 status_report() # Find out what's happening. 49 { 50 echo "-------------------------------------" 51 echo "REPORT" 52 echo "Stack Pointer = $SP" 53 echo "Just popped \""$Data"\" off the stack." 54 echo "-------------------------------------" 55 echo 56 } 57 58 59 # ======================================================= 60 # Now, for some fun. 61 62 echo 63 64 # See if you can pop anything off empty stack. 65 pop 66 status_report 67 68 echo 69 70 push garbage 71 pop 72 status_report # Garbage in, garbage out. 73 74 value1=23; push $value1 75 value2=skidoo; push $value2 76 value3=FINAL; push $value3 77 78 pop # FINAL 79 status_report 80 pop # skidoo 81 status_report 82 pop # 23 83 status_report # Last-in, first-out! 84 85 # Notice how the stack pointer decrements with each push, 86 #+ and increments with each pop. 87 88 echo 89 # ======================================================= 90 91 92 # Exercises: 93 # --------- 94 95 # 1) Modify the "push()" function to permit pushing 96 # + multiple element on the stack with a single function call. 97 98 # 2) Modify the "pop()" function to permit popping 99 # + multiple element from the stack with a single function call. 100 101 # 3) Using this script as a jumping-off point, 102 # + write a stack-based 4-function calculator. 103 104 exit 0 |
--
Fancy manipulation of array "subscripts" may require intermediate variables. For projects involving this, again consider using a more powerful programming language, such as Perl or C.
Example 26-10. Complex array application: Exploring a weird mathematical series
1 #!/bin/bash 2 3 # Douglas Hofstadter's notorious "Q-series": 4 5 # Q(1) = Q(2) = 1 6 # Q(n) = Q(n - Q(n-1)) + Q(n - Q(n-2)), for n>2 7 8 # This is a "chaotic" integer series with strange and unpredictable behavior. 9 # The first 20 terms of the series are: 10 # 1 1 2 3 3 4 5 5 6 6 6 8 8 8 10 9 10 11 11 12 11 12 # See Hofstadter's book, "Goedel, Escher, Bach: An Eternal Golden Braid", 13 # p. 137, ff. 14 15 16 LIMIT=100 # Number of terms to calculate 17 LINEWIDTH=20 # Number of terms printed per line 18 19 Q[1]=1 # First two terms of series are 1. 20 Q[2]=1 21 22 echo 23 echo "Q-series [$LIMIT terms]:" 24 echo -n "${Q[1]} " # Output first two terms. 25 echo -n "${Q[2]} " 26 27 for ((n=3; n <= $LIMIT; n++)) # C-like loop conditions. 28 do # Q[n] = Q[n - Q[n-1]] + Q[n - Q[n-2]] for n>2 29 # Need to break the expression into intermediate terms, 30 # since Bash doesn't handle complex array arithmetic very well. 31 32 let "n1 = $n - 1" # n-1 33 let "n2 = $n - 2" # n-2 34 35 t0=`expr $n - ${Q[n1]}` # n - Q[n-1] 36 t1=`expr $n - ${Q[n2]}` # n - Q[n-2] 37 38 T0=${Q[t0]} # Q[n - Q[n-1]] 39 T1=${Q[t1]} # Q[n - Q[n-2]] 40 41 Q[n]=`expr $T0 + $T1` # Q[n - Q[n-1]] + Q[n - Q[n-2]] 42 echo -n "${Q[n]} " 43 44 if [ `expr $n % $LINEWIDTH` -eq 0 ] # Format output. 45 then # mod 46 echo # Break lines into neat chunks. 47 fi 48 49 done 50 51 echo 52 53 exit 0 54 55 # This is an iterative implementation of the Q-series. 56 # The more intuitive recursive implementation is left as an exercise. 57 # Warning: calculating this series recursively takes a *very* long time. |
--
Bash supports only one-dimensional arrays, however a little trickery permits simulating multi-dimensional ones.
Example 26-11. Simulating a two-dimensional array, then tilting it
1 #!/bin/bash 2 # Simulating a two-dimensional array. 3 4 # A two-dimensional array stores rows sequentially. 5 6 Rows=5 7 Columns=5 8 9 declare -a alpha # char alpha [Rows] [Columns]; 10 # Unnecessary declaration. 11 12 load_alpha () 13 { 14 local rc=0 15 local index 16 17 18 for i in A B C D E F G H I J K L M N O P Q R S T U V W X Y 19 do 20 local row=`expr $rc / $Columns` 21 local column=`expr $rc % $Rows` 22 let "index = $row * $Rows + $column" 23 alpha[$index]=$i # alpha[$row][$column] 24 let "rc += 1" 25 done 26 27 # Simpler would be 28 # declare -a alpha=( A B C D E F G H I J K L M N O P Q R S T U V W X Y ) 29 # but this somehow lacks the "flavor" of a two-dimensional array. 30 } 31 32 print_alpha () 33 { 34 local row=0 35 local index 36 37 echo 38 39 while [ "$row" -lt "$Rows" ] # Print out in "row major" order - 40 do # columns vary 41 # while row (outer loop) remains the same. 42 local column=0 43 44 while [ "$column" -lt "$Columns" ] 45 do 46 let "index = $row * $Rows + $column" 47 echo -n "${alpha[index]} " # alpha[$row][$column] 48 let "column += 1" 49 done 50 51 let "row += 1" 52 echo 53 54 done 55 56 # The simpler equivalent is 57 # echo ${alpha[*]} | xargs -n $Columns 58 59 echo 60 } 61 62 filter () # Filter out negative array indices. 63 { 64 65 echo -n " " # Provides the tilt. 66 67 if [[ "$1" -ge 0 && "$1" -lt "$Rows" && "$2" -ge 0 && "$2" -lt "$Columns" ]] 68 then 69 let "index = $1 * $Rows + $2" 70 # Now, print it rotated. 71 echo -n " ${alpha[index]}" # alpha[$row][$column] 72 fi 73 74 } 75 76 77 78 79 rotate () # Rotate the array 45 degrees 80 { # ("balance" it on its lower lefthand corner). 81 local row 82 local column 83 84 for (( row = Rows; row > -Rows; row-- )) # Step through the array backwards. 85 do 86 87 for (( column = 0; column < Columns; column++ )) 88 do 89 90 if [ "$row" -ge 0 ] 91 then 92 let "t1 = $column - $row" 93 let "t2 = $column" 94 else 95 let "t1 = $column" 96 let "t2 = $column + $row" 97 fi 98 99 filter $t1 $t2 # Filter out negative array indices. 100 done 101 102 echo; echo 103 104 done 105 106 # Array rotation inspired by examples (pp. 143-146) in 107 # "Advanced C Programming on the IBM PC", by Herbert Mayer 108 # (see bibliography). 109 110 } 111 112 113 #-----------------------------------------------------# 114 load_alpha # Load the array. 115 print_alpha # Print it out. 116 rotate # Rotate it 45 degrees counterclockwise. 117 #-----------------------------------------------------# 118 119 120 # This is a rather contrived, not to mention kludgy simulation. 121 # 122 # Exercises: 123 # --------- 124 # 1) Rewrite the array loading and printing functions 125 # + in a more intuitive and elegant fashion. 126 # 127 # 2) Figure out how the array rotation functions work. 128 # Hint: think about the implications of backwards-indexing an array. 129 130 exit 0 |
A two-dimensional array is essentially equivalent to a one-dimensional one, but with additional addressing modes for referencing and manipulating the individual elements by "row" and "column" position.
For an even more elaborate example of simulating a two-dimensional array, see Example A-11.