libstdc++
|
00001 // Multimap implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 00004 // 2011 Free Software Foundation, Inc. 00005 // 00006 // This file is part of the GNU ISO C++ Library. This library is free 00007 // software; you can redistribute it and/or modify it under the 00008 // terms of the GNU General Public License as published by the 00009 // Free Software Foundation; either version 3, or (at your option) 00010 // any later version. 00011 00012 // This library is distributed in the hope that it will be useful, 00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 // GNU General Public License for more details. 00016 00017 // Under Section 7 of GPL version 3, you are granted additional 00018 // permissions described in the GCC Runtime Library Exception, version 00019 // 3.1, as published by the Free Software Foundation. 00020 00021 // You should have received a copy of the GNU General Public License and 00022 // a copy of the GCC Runtime Library Exception along with this program; 00023 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00024 // <http://www.gnu.org/licenses/>. 00025 00026 /* 00027 * 00028 * Copyright (c) 1994 00029 * Hewlett-Packard Company 00030 * 00031 * Permission to use, copy, modify, distribute and sell this software 00032 * and its documentation for any purpose is hereby granted without fee, 00033 * provided that the above copyright notice appear in all copies and 00034 * that both that copyright notice and this permission notice appear 00035 * in supporting documentation. Hewlett-Packard Company makes no 00036 * representations about the suitability of this software for any 00037 * purpose. It is provided "as is" without express or implied warranty. 00038 * 00039 * 00040 * Copyright (c) 1996,1997 00041 * Silicon Graphics Computer Systems, Inc. 00042 * 00043 * Permission to use, copy, modify, distribute and sell this software 00044 * and its documentation for any purpose is hereby granted without fee, 00045 * provided that the above copyright notice appear in all copies and 00046 * that both that copyright notice and this permission notice appear 00047 * in supporting documentation. Silicon Graphics makes no 00048 * representations about the suitability of this software for any 00049 * purpose. It is provided "as is" without express or implied warranty. 00050 */ 00051 00052 /** @file bits/stl_multimap.h 00053 * This is an internal header file, included by other library headers. 00054 * Do not attempt to use it directly. @headername{map} 00055 */ 00056 00057 #ifndef _STL_MULTIMAP_H 00058 #define _STL_MULTIMAP_H 1 00059 00060 #include <bits/concept_check.h> 00061 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00062 #include <initializer_list> 00063 #endif 00064 00065 namespace std _GLIBCXX_VISIBILITY(default) 00066 { 00067 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER 00068 00069 /** 00070 * @brief A standard container made up of (key,value) pairs, which can be 00071 * retrieved based on a key, in logarithmic time. 00072 * 00073 * @ingroup associative_containers 00074 * 00075 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00076 * <a href="tables.html#66">reversible container</a>, and an 00077 * <a href="tables.html#69">associative container</a> (using equivalent 00078 * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type 00079 * is T, and the value_type is std::pair<const Key,T>. 00080 * 00081 * Multimaps support bidirectional iterators. 00082 * 00083 * The private tree data is declared exactly the same way for map and 00084 * multimap; the distinction is made entirely in how the tree functions are 00085 * called (*_unique versus *_equal, same as the standard). 00086 */ 00087 template <typename _Key, typename _Tp, 00088 typename _Compare = std::less<_Key>, 00089 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > > 00090 class multimap 00091 { 00092 public: 00093 typedef _Key key_type; 00094 typedef _Tp mapped_type; 00095 typedef std::pair<const _Key, _Tp> value_type; 00096 typedef _Compare key_compare; 00097 typedef _Alloc allocator_type; 00098 00099 private: 00100 // concept requirements 00101 typedef typename _Alloc::value_type _Alloc_value_type; 00102 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00103 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00104 _BinaryFunctionConcept) 00105 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept) 00106 00107 public: 00108 class value_compare 00109 : public std::binary_function<value_type, value_type, bool> 00110 { 00111 friend class multimap<_Key, _Tp, _Compare, _Alloc>; 00112 protected: 00113 _Compare comp; 00114 00115 value_compare(_Compare __c) 00116 : comp(__c) { } 00117 00118 public: 00119 bool operator()(const value_type& __x, const value_type& __y) const 00120 { return comp(__x.first, __y.first); } 00121 }; 00122 00123 private: 00124 /// This turns a red-black tree into a [multi]map. 00125 typedef typename _Alloc::template rebind<value_type>::other 00126 _Pair_alloc_type; 00127 00128 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, 00129 key_compare, _Pair_alloc_type> _Rep_type; 00130 /// The actual tree structure. 00131 _Rep_type _M_t; 00132 00133 public: 00134 // many of these are specified differently in ISO, but the following are 00135 // "functionally equivalent" 00136 typedef typename _Pair_alloc_type::pointer pointer; 00137 typedef typename _Pair_alloc_type::const_pointer const_pointer; 00138 typedef typename _Pair_alloc_type::reference reference; 00139 typedef typename _Pair_alloc_type::const_reference const_reference; 00140 typedef typename _Rep_type::iterator iterator; 00141 typedef typename _Rep_type::const_iterator const_iterator; 00142 typedef typename _Rep_type::size_type size_type; 00143 typedef typename _Rep_type::difference_type difference_type; 00144 typedef typename _Rep_type::reverse_iterator reverse_iterator; 00145 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00146 00147 // [23.3.2] construct/copy/destroy 00148 // (get_allocator() is also listed in this section) 00149 /** 00150 * @brief Default constructor creates no elements. 00151 */ 00152 multimap() 00153 : _M_t() { } 00154 00155 /** 00156 * @brief Creates a %multimap with no elements. 00157 * @param __comp A comparison object. 00158 * @param __a An allocator object. 00159 */ 00160 explicit 00161 multimap(const _Compare& __comp, 00162 const allocator_type& __a = allocator_type()) 00163 : _M_t(__comp, _Pair_alloc_type(__a)) { } 00164 00165 /** 00166 * @brief %Multimap copy constructor. 00167 * @param __x A %multimap of identical element and allocator types. 00168 * 00169 * The newly-created %multimap uses a copy of the allocation object 00170 * used by @a __x. 00171 */ 00172 multimap(const multimap& __x) 00173 : _M_t(__x._M_t) { } 00174 00175 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00176 /** 00177 * @brief %Multimap move constructor. 00178 * @param __x A %multimap of identical element and allocator types. 00179 * 00180 * The newly-created %multimap contains the exact contents of @a __x. 00181 * The contents of @a __x are a valid, but unspecified %multimap. 00182 */ 00183 multimap(multimap&& __x) 00184 noexcept(is_nothrow_copy_constructible<_Compare>::value) 00185 : _M_t(std::move(__x._M_t)) { } 00186 00187 /** 00188 * @brief Builds a %multimap from an initializer_list. 00189 * @param __l An initializer_list. 00190 * @param __comp A comparison functor. 00191 * @param __a An allocator object. 00192 * 00193 * Create a %multimap consisting of copies of the elements from 00194 * the initializer_list. This is linear in N if the list is already 00195 * sorted, and NlogN otherwise (where N is @a __l.size()). 00196 */ 00197 multimap(initializer_list<value_type> __l, 00198 const _Compare& __comp = _Compare(), 00199 const allocator_type& __a = allocator_type()) 00200 : _M_t(__comp, _Pair_alloc_type(__a)) 00201 { _M_t._M_insert_equal(__l.begin(), __l.end()); } 00202 #endif 00203 00204 /** 00205 * @brief Builds a %multimap from a range. 00206 * @param __first An input iterator. 00207 * @param __last An input iterator. 00208 * 00209 * Create a %multimap consisting of copies of the elements from 00210 * [__first,__last). This is linear in N if the range is already sorted, 00211 * and NlogN otherwise (where N is distance(__first,__last)). 00212 */ 00213 template<typename _InputIterator> 00214 multimap(_InputIterator __first, _InputIterator __last) 00215 : _M_t() 00216 { _M_t._M_insert_equal(__first, __last); } 00217 00218 /** 00219 * @brief Builds a %multimap from a range. 00220 * @param __first An input iterator. 00221 * @param __last An input iterator. 00222 * @param __comp A comparison functor. 00223 * @param __a An allocator object. 00224 * 00225 * Create a %multimap consisting of copies of the elements from 00226 * [__first,__last). This is linear in N if the range is already sorted, 00227 * and NlogN otherwise (where N is distance(__first,__last)). 00228 */ 00229 template<typename _InputIterator> 00230 multimap(_InputIterator __first, _InputIterator __last, 00231 const _Compare& __comp, 00232 const allocator_type& __a = allocator_type()) 00233 : _M_t(__comp, _Pair_alloc_type(__a)) 00234 { _M_t._M_insert_equal(__first, __last); } 00235 00236 // FIXME There is no dtor declared, but we should have something generated 00237 // by Doxygen. I don't know what tags to add to this paragraph to make 00238 // that happen: 00239 /** 00240 * The dtor only erases the elements, and note that if the elements 00241 * themselves are pointers, the pointed-to memory is not touched in any 00242 * way. Managing the pointer is the user's responsibility. 00243 */ 00244 00245 /** 00246 * @brief %Multimap assignment operator. 00247 * @param __x A %multimap of identical element and allocator types. 00248 * 00249 * All the elements of @a __x are copied, but unlike the copy 00250 * constructor, the allocator object is not copied. 00251 */ 00252 multimap& 00253 operator=(const multimap& __x) 00254 { 00255 _M_t = __x._M_t; 00256 return *this; 00257 } 00258 00259 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00260 /** 00261 * @brief %Multimap move assignment operator. 00262 * @param __x A %multimap of identical element and allocator types. 00263 * 00264 * The contents of @a __x are moved into this multimap (without copying). 00265 * @a __x is a valid, but unspecified multimap. 00266 */ 00267 multimap& 00268 operator=(multimap&& __x) 00269 { 00270 // NB: DR 1204. 00271 // NB: DR 675. 00272 this->clear(); 00273 this->swap(__x); 00274 return *this; 00275 } 00276 00277 /** 00278 * @brief %Multimap list assignment operator. 00279 * @param __l An initializer_list. 00280 * 00281 * This function fills a %multimap with copies of the elements 00282 * in the initializer list @a __l. 00283 * 00284 * Note that the assignment completely changes the %multimap and 00285 * that the resulting %multimap's size is the same as the number 00286 * of elements assigned. Old data may be lost. 00287 */ 00288 multimap& 00289 operator=(initializer_list<value_type> __l) 00290 { 00291 this->clear(); 00292 this->insert(__l.begin(), __l.end()); 00293 return *this; 00294 } 00295 #endif 00296 00297 /// Get a copy of the memory allocation object. 00298 allocator_type 00299 get_allocator() const _GLIBCXX_NOEXCEPT 00300 { return allocator_type(_M_t.get_allocator()); } 00301 00302 // iterators 00303 /** 00304 * Returns a read/write iterator that points to the first pair in the 00305 * %multimap. Iteration is done in ascending order according to the 00306 * keys. 00307 */ 00308 iterator 00309 begin() _GLIBCXX_NOEXCEPT 00310 { return _M_t.begin(); } 00311 00312 /** 00313 * Returns a read-only (constant) iterator that points to the first pair 00314 * in the %multimap. Iteration is done in ascending order according to 00315 * the keys. 00316 */ 00317 const_iterator 00318 begin() const _GLIBCXX_NOEXCEPT 00319 { return _M_t.begin(); } 00320 00321 /** 00322 * Returns a read/write iterator that points one past the last pair in 00323 * the %multimap. Iteration is done in ascending order according to the 00324 * keys. 00325 */ 00326 iterator 00327 end() _GLIBCXX_NOEXCEPT 00328 { return _M_t.end(); } 00329 00330 /** 00331 * Returns a read-only (constant) iterator that points one past the last 00332 * pair in the %multimap. Iteration is done in ascending order according 00333 * to the keys. 00334 */ 00335 const_iterator 00336 end() const _GLIBCXX_NOEXCEPT 00337 { return _M_t.end(); } 00338 00339 /** 00340 * Returns a read/write reverse iterator that points to the last pair in 00341 * the %multimap. Iteration is done in descending order according to the 00342 * keys. 00343 */ 00344 reverse_iterator 00345 rbegin() _GLIBCXX_NOEXCEPT 00346 { return _M_t.rbegin(); } 00347 00348 /** 00349 * Returns a read-only (constant) reverse iterator that points to the 00350 * last pair in the %multimap. Iteration is done in descending order 00351 * according to the keys. 00352 */ 00353 const_reverse_iterator 00354 rbegin() const _GLIBCXX_NOEXCEPT 00355 { return _M_t.rbegin(); } 00356 00357 /** 00358 * Returns a read/write reverse iterator that points to one before the 00359 * first pair in the %multimap. Iteration is done in descending order 00360 * according to the keys. 00361 */ 00362 reverse_iterator 00363 rend() _GLIBCXX_NOEXCEPT 00364 { return _M_t.rend(); } 00365 00366 /** 00367 * Returns a read-only (constant) reverse iterator that points to one 00368 * before the first pair in the %multimap. Iteration is done in 00369 * descending order according to the keys. 00370 */ 00371 const_reverse_iterator 00372 rend() const _GLIBCXX_NOEXCEPT 00373 { return _M_t.rend(); } 00374 00375 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00376 /** 00377 * Returns a read-only (constant) iterator that points to the first pair 00378 * in the %multimap. Iteration is done in ascending order according to 00379 * the keys. 00380 */ 00381 const_iterator 00382 cbegin() const noexcept 00383 { return _M_t.begin(); } 00384 00385 /** 00386 * Returns a read-only (constant) iterator that points one past the last 00387 * pair in the %multimap. Iteration is done in ascending order according 00388 * to the keys. 00389 */ 00390 const_iterator 00391 cend() const noexcept 00392 { return _M_t.end(); } 00393 00394 /** 00395 * Returns a read-only (constant) reverse iterator that points to the 00396 * last pair in the %multimap. Iteration is done in descending order 00397 * according to the keys. 00398 */ 00399 const_reverse_iterator 00400 crbegin() const noexcept 00401 { return _M_t.rbegin(); } 00402 00403 /** 00404 * Returns a read-only (constant) reverse iterator that points to one 00405 * before the first pair in the %multimap. Iteration is done in 00406 * descending order according to the keys. 00407 */ 00408 const_reverse_iterator 00409 crend() const noexcept 00410 { return _M_t.rend(); } 00411 #endif 00412 00413 // capacity 00414 /** Returns true if the %multimap is empty. */ 00415 bool 00416 empty() const _GLIBCXX_NOEXCEPT 00417 { return _M_t.empty(); } 00418 00419 /** Returns the size of the %multimap. */ 00420 size_type 00421 size() const _GLIBCXX_NOEXCEPT 00422 { return _M_t.size(); } 00423 00424 /** Returns the maximum size of the %multimap. */ 00425 size_type 00426 max_size() const _GLIBCXX_NOEXCEPT 00427 { return _M_t.max_size(); } 00428 00429 // modifiers 00430 /** 00431 * @brief Inserts a std::pair into the %multimap. 00432 * @param __x Pair to be inserted (see std::make_pair for easy creation 00433 * of pairs). 00434 * @return An iterator that points to the inserted (key,value) pair. 00435 * 00436 * This function inserts a (key, value) pair into the %multimap. 00437 * Contrary to a std::map the %multimap does not rely on unique keys and 00438 * thus multiple pairs with the same key can be inserted. 00439 * 00440 * Insertion requires logarithmic time. 00441 */ 00442 iterator 00443 insert(const value_type& __x) 00444 { return _M_t._M_insert_equal(__x); } 00445 00446 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00447 template<typename _Pair, typename = typename 00448 std::enable_if<std::is_convertible<_Pair, 00449 value_type>::value>::type> 00450 iterator 00451 insert(_Pair&& __x) 00452 { return _M_t._M_insert_equal(std::forward<_Pair>(__x)); } 00453 #endif 00454 00455 /** 00456 * @brief Inserts a std::pair into the %multimap. 00457 * @param __position An iterator that serves as a hint as to where the 00458 * pair should be inserted. 00459 * @param __x Pair to be inserted (see std::make_pair for easy creation 00460 * of pairs). 00461 * @return An iterator that points to the inserted (key,value) pair. 00462 * 00463 * This function inserts a (key, value) pair into the %multimap. 00464 * Contrary to a std::map the %multimap does not rely on unique keys and 00465 * thus multiple pairs with the same key can be inserted. 00466 * Note that the first parameter is only a hint and can potentially 00467 * improve the performance of the insertion process. A bad hint would 00468 * cause no gains in efficiency. 00469 * 00470 * For more on @a hinting, see: 00471 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html 00472 * 00473 * Insertion requires logarithmic time (if the hint is not taken). 00474 */ 00475 iterator 00476 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00477 insert(const_iterator __position, const value_type& __x) 00478 #else 00479 insert(iterator __position, const value_type& __x) 00480 #endif 00481 { return _M_t._M_insert_equal_(__position, __x); } 00482 00483 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00484 template<typename _Pair, typename = typename 00485 std::enable_if<std::is_convertible<_Pair, 00486 value_type>::value>::type> 00487 iterator 00488 insert(const_iterator __position, _Pair&& __x) 00489 { return _M_t._M_insert_equal_(__position, 00490 std::forward<_Pair>(__x)); } 00491 #endif 00492 00493 /** 00494 * @brief A template function that attempts to insert a range 00495 * of elements. 00496 * @param __first Iterator pointing to the start of the range to be 00497 * inserted. 00498 * @param __last Iterator pointing to the end of the range. 00499 * 00500 * Complexity similar to that of the range constructor. 00501 */ 00502 template<typename _InputIterator> 00503 void 00504 insert(_InputIterator __first, _InputIterator __last) 00505 { _M_t._M_insert_equal(__first, __last); } 00506 00507 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00508 /** 00509 * @brief Attempts to insert a list of std::pairs into the %multimap. 00510 * @param __l A std::initializer_list<value_type> of pairs to be 00511 * inserted. 00512 * 00513 * Complexity similar to that of the range constructor. 00514 */ 00515 void 00516 insert(initializer_list<value_type> __l) 00517 { this->insert(__l.begin(), __l.end()); } 00518 #endif 00519 00520 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00521 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00522 // DR 130. Associative erase should return an iterator. 00523 /** 00524 * @brief Erases an element from a %multimap. 00525 * @param __position An iterator pointing to the element to be erased. 00526 * @return An iterator pointing to the element immediately following 00527 * @a position prior to the element being erased. If no such 00528 * element exists, end() is returned. 00529 * 00530 * This function erases an element, pointed to by the given iterator, 00531 * from a %multimap. Note that this function only erases the element, 00532 * and that if the element is itself a pointer, the pointed-to memory is 00533 * not touched in any way. Managing the pointer is the user's 00534 * responsibility. 00535 */ 00536 iterator 00537 erase(const_iterator __position) 00538 { return _M_t.erase(__position); } 00539 00540 // LWG 2059. 00541 iterator 00542 erase(iterator __position) 00543 { return _M_t.erase(__position); } 00544 #else 00545 /** 00546 * @brief Erases an element from a %multimap. 00547 * @param __position An iterator pointing to the element to be erased. 00548 * 00549 * This function erases an element, pointed to by the given iterator, 00550 * from a %multimap. Note that this function only erases the element, 00551 * and that if the element is itself a pointer, the pointed-to memory is 00552 * not touched in any way. Managing the pointer is the user's 00553 * responsibility. 00554 */ 00555 void 00556 erase(iterator __position) 00557 { _M_t.erase(__position); } 00558 #endif 00559 00560 /** 00561 * @brief Erases elements according to the provided key. 00562 * @param __x Key of element to be erased. 00563 * @return The number of elements erased. 00564 * 00565 * This function erases all elements located by the given key from a 00566 * %multimap. 00567 * Note that this function only erases the element, and that if 00568 * the element is itself a pointer, the pointed-to memory is not touched 00569 * in any way. Managing the pointer is the user's responsibility. 00570 */ 00571 size_type 00572 erase(const key_type& __x) 00573 { return _M_t.erase(__x); } 00574 00575 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00576 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00577 // DR 130. Associative erase should return an iterator. 00578 /** 00579 * @brief Erases a [first,last) range of elements from a %multimap. 00580 * @param __first Iterator pointing to the start of the range to be 00581 * erased. 00582 * @param __last Iterator pointing to the end of the range to be 00583 * erased . 00584 * @return The iterator @a __last. 00585 * 00586 * This function erases a sequence of elements from a %multimap. 00587 * Note that this function only erases the elements, and that if 00588 * the elements themselves are pointers, the pointed-to memory is not 00589 * touched in any way. Managing the pointer is the user's 00590 * responsibility. 00591 */ 00592 iterator 00593 erase(const_iterator __first, const_iterator __last) 00594 { return _M_t.erase(__first, __last); } 00595 #else 00596 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00597 // DR 130. Associative erase should return an iterator. 00598 /** 00599 * @brief Erases a [first,last) range of elements from a %multimap. 00600 * @param __first Iterator pointing to the start of the range to be 00601 * erased. 00602 * @param __last Iterator pointing to the end of the range to 00603 * be erased. 00604 * 00605 * This function erases a sequence of elements from a %multimap. 00606 * Note that this function only erases the elements, and that if 00607 * the elements themselves are pointers, the pointed-to memory is not 00608 * touched in any way. Managing the pointer is the user's 00609 * responsibility. 00610 */ 00611 void 00612 erase(iterator __first, iterator __last) 00613 { _M_t.erase(__first, __last); } 00614 #endif 00615 00616 /** 00617 * @brief Swaps data with another %multimap. 00618 * @param __x A %multimap of the same element and allocator types. 00619 * 00620 * This exchanges the elements between two multimaps in constant time. 00621 * (It is only swapping a pointer, an integer, and an instance of 00622 * the @c Compare type (which itself is often stateless and empty), so it 00623 * should be quite fast.) 00624 * Note that the global std::swap() function is specialized such that 00625 * std::swap(m1,m2) will feed to this function. 00626 */ 00627 void 00628 swap(multimap& __x) 00629 { _M_t.swap(__x._M_t); } 00630 00631 /** 00632 * Erases all elements in a %multimap. Note that this function only 00633 * erases the elements, and that if the elements themselves are pointers, 00634 * the pointed-to memory is not touched in any way. Managing the pointer 00635 * is the user's responsibility. 00636 */ 00637 void 00638 clear() _GLIBCXX_NOEXCEPT 00639 { _M_t.clear(); } 00640 00641 // observers 00642 /** 00643 * Returns the key comparison object out of which the %multimap 00644 * was constructed. 00645 */ 00646 key_compare 00647 key_comp() const 00648 { return _M_t.key_comp(); } 00649 00650 /** 00651 * Returns a value comparison object, built from the key comparison 00652 * object out of which the %multimap was constructed. 00653 */ 00654 value_compare 00655 value_comp() const 00656 { return value_compare(_M_t.key_comp()); } 00657 00658 // multimap operations 00659 /** 00660 * @brief Tries to locate an element in a %multimap. 00661 * @param __x Key of (key, value) pair to be located. 00662 * @return Iterator pointing to sought-after element, 00663 * or end() if not found. 00664 * 00665 * This function takes a key and tries to locate the element with which 00666 * the key matches. If successful the function returns an iterator 00667 * pointing to the sought after %pair. If unsuccessful it returns the 00668 * past-the-end ( @c end() ) iterator. 00669 */ 00670 iterator 00671 find(const key_type& __x) 00672 { return _M_t.find(__x); } 00673 00674 /** 00675 * @brief Tries to locate an element in a %multimap. 00676 * @param __x Key of (key, value) pair to be located. 00677 * @return Read-only (constant) iterator pointing to sought-after 00678 * element, or end() if not found. 00679 * 00680 * This function takes a key and tries to locate the element with which 00681 * the key matches. If successful the function returns a constant 00682 * iterator pointing to the sought after %pair. If unsuccessful it 00683 * returns the past-the-end ( @c end() ) iterator. 00684 */ 00685 const_iterator 00686 find(const key_type& __x) const 00687 { return _M_t.find(__x); } 00688 00689 /** 00690 * @brief Finds the number of elements with given key. 00691 * @param __x Key of (key, value) pairs to be located. 00692 * @return Number of elements with specified key. 00693 */ 00694 size_type 00695 count(const key_type& __x) const 00696 { return _M_t.count(__x); } 00697 00698 /** 00699 * @brief Finds the beginning of a subsequence matching given key. 00700 * @param __x Key of (key, value) pair to be located. 00701 * @return Iterator pointing to first element equal to or greater 00702 * than key, or end(). 00703 * 00704 * This function returns the first element of a subsequence of elements 00705 * that matches the given key. If unsuccessful it returns an iterator 00706 * pointing to the first element that has a greater value than given key 00707 * or end() if no such element exists. 00708 */ 00709 iterator 00710 lower_bound(const key_type& __x) 00711 { return _M_t.lower_bound(__x); } 00712 00713 /** 00714 * @brief Finds the beginning of a subsequence matching given key. 00715 * @param __x Key of (key, value) pair to be located. 00716 * @return Read-only (constant) iterator pointing to first element 00717 * equal to or greater than key, or end(). 00718 * 00719 * This function returns the first element of a subsequence of 00720 * elements that matches the given key. If unsuccessful the 00721 * iterator will point to the next greatest element or, if no 00722 * such greater element exists, to end(). 00723 */ 00724 const_iterator 00725 lower_bound(const key_type& __x) const 00726 { return _M_t.lower_bound(__x); } 00727 00728 /** 00729 * @brief Finds the end of a subsequence matching given key. 00730 * @param __x Key of (key, value) pair to be located. 00731 * @return Iterator pointing to the first element 00732 * greater than key, or end(). 00733 */ 00734 iterator 00735 upper_bound(const key_type& __x) 00736 { return _M_t.upper_bound(__x); } 00737 00738 /** 00739 * @brief Finds the end of a subsequence matching given key. 00740 * @param __x Key of (key, value) pair to be located. 00741 * @return Read-only (constant) iterator pointing to first iterator 00742 * greater than key, or end(). 00743 */ 00744 const_iterator 00745 upper_bound(const key_type& __x) const 00746 { return _M_t.upper_bound(__x); } 00747 00748 /** 00749 * @brief Finds a subsequence matching given key. 00750 * @param __x Key of (key, value) pairs to be located. 00751 * @return Pair of iterators that possibly points to the subsequence 00752 * matching given key. 00753 * 00754 * This function is equivalent to 00755 * @code 00756 * std::make_pair(c.lower_bound(val), 00757 * c.upper_bound(val)) 00758 * @endcode 00759 * (but is faster than making the calls separately). 00760 */ 00761 std::pair<iterator, iterator> 00762 equal_range(const key_type& __x) 00763 { return _M_t.equal_range(__x); } 00764 00765 /** 00766 * @brief Finds a subsequence matching given key. 00767 * @param __x Key of (key, value) pairs to be located. 00768 * @return Pair of read-only (constant) iterators that possibly points 00769 * to the subsequence matching given key. 00770 * 00771 * This function is equivalent to 00772 * @code 00773 * std::make_pair(c.lower_bound(val), 00774 * c.upper_bound(val)) 00775 * @endcode 00776 * (but is faster than making the calls separately). 00777 */ 00778 std::pair<const_iterator, const_iterator> 00779 equal_range(const key_type& __x) const 00780 { return _M_t.equal_range(__x); } 00781 00782 template<typename _K1, typename _T1, typename _C1, typename _A1> 00783 friend bool 00784 operator==(const multimap<_K1, _T1, _C1, _A1>&, 00785 const multimap<_K1, _T1, _C1, _A1>&); 00786 00787 template<typename _K1, typename _T1, typename _C1, typename _A1> 00788 friend bool 00789 operator<(const multimap<_K1, _T1, _C1, _A1>&, 00790 const multimap<_K1, _T1, _C1, _A1>&); 00791 }; 00792 00793 /** 00794 * @brief Multimap equality comparison. 00795 * @param __x A %multimap. 00796 * @param __y A %multimap of the same type as @a __x. 00797 * @return True iff the size and elements of the maps are equal. 00798 * 00799 * This is an equivalence relation. It is linear in the size of the 00800 * multimaps. Multimaps are considered equivalent if their sizes are equal, 00801 * and if corresponding elements compare equal. 00802 */ 00803 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00804 inline bool 00805 operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00806 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00807 { return __x._M_t == __y._M_t; } 00808 00809 /** 00810 * @brief Multimap ordering relation. 00811 * @param __x A %multimap. 00812 * @param __y A %multimap of the same type as @a __x. 00813 * @return True iff @a x is lexicographically less than @a y. 00814 * 00815 * This is a total ordering relation. It is linear in the size of the 00816 * multimaps. The elements must be comparable with @c <. 00817 * 00818 * See std::lexicographical_compare() for how the determination is made. 00819 */ 00820 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00821 inline bool 00822 operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00823 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00824 { return __x._M_t < __y._M_t; } 00825 00826 /// Based on operator== 00827 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00828 inline bool 00829 operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00830 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00831 { return !(__x == __y); } 00832 00833 /// Based on operator< 00834 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00835 inline bool 00836 operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00837 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00838 { return __y < __x; } 00839 00840 /// Based on operator< 00841 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00842 inline bool 00843 operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00844 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00845 { return !(__y < __x); } 00846 00847 /// Based on operator< 00848 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00849 inline bool 00850 operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00851 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00852 { return !(__x < __y); } 00853 00854 /// See std::multimap::swap(). 00855 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00856 inline void 00857 swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00858 multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00859 { __x.swap(__y); } 00860 00861 _GLIBCXX_END_NAMESPACE_CONTAINER 00862 } // namespace std 00863 00864 #endif /* _STL_MULTIMAP_H */