libstdc++
|
00001 // Deque implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 00004 // 2011 Free Software Foundation, Inc. 00005 // 00006 // This file is part of the GNU ISO C++ Library. This library is free 00007 // software; you can redistribute it and/or modify it under the 00008 // terms of the GNU General Public License as published by the 00009 // Free Software Foundation; either version 3, or (at your option) 00010 // any later version. 00011 00012 // This library is distributed in the hope that it will be useful, 00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 // GNU General Public License for more details. 00016 00017 // Under Section 7 of GPL version 3, you are granted additional 00018 // permissions described in the GCC Runtime Library Exception, version 00019 // 3.1, as published by the Free Software Foundation. 00020 00021 // You should have received a copy of the GNU General Public License and 00022 // a copy of the GCC Runtime Library Exception along with this program; 00023 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00024 // <http://www.gnu.org/licenses/>. 00025 00026 /* 00027 * 00028 * Copyright (c) 1994 00029 * Hewlett-Packard Company 00030 * 00031 * Permission to use, copy, modify, distribute and sell this software 00032 * and its documentation for any purpose is hereby granted without fee, 00033 * provided that the above copyright notice appear in all copies and 00034 * that both that copyright notice and this permission notice appear 00035 * in supporting documentation. Hewlett-Packard Company makes no 00036 * representations about the suitability of this software for any 00037 * purpose. It is provided "as is" without express or implied warranty. 00038 * 00039 * 00040 * Copyright (c) 1997 00041 * Silicon Graphics Computer Systems, Inc. 00042 * 00043 * Permission to use, copy, modify, distribute and sell this software 00044 * and its documentation for any purpose is hereby granted without fee, 00045 * provided that the above copyright notice appear in all copies and 00046 * that both that copyright notice and this permission notice appear 00047 * in supporting documentation. Silicon Graphics makes no 00048 * representations about the suitability of this software for any 00049 * purpose. It is provided "as is" without express or implied warranty. 00050 */ 00051 00052 /** @file bits/stl_deque.h 00053 * This is an internal header file, included by other library headers. 00054 * Do not attempt to use it directly. @headername{deque} 00055 */ 00056 00057 #ifndef _STL_DEQUE_H 00058 #define _STL_DEQUE_H 1 00059 00060 #include <bits/concept_check.h> 00061 #include <bits/stl_iterator_base_types.h> 00062 #include <bits/stl_iterator_base_funcs.h> 00063 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00064 #include <initializer_list> 00065 #endif 00066 00067 namespace std _GLIBCXX_VISIBILITY(default) 00068 { 00069 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER 00070 00071 /** 00072 * @brief This function controls the size of memory nodes. 00073 * @param __size The size of an element. 00074 * @return The number (not byte size) of elements per node. 00075 * 00076 * This function started off as a compiler kludge from SGI, but 00077 * seems to be a useful wrapper around a repeated constant 00078 * expression. The @b 512 is tunable (and no other code needs to 00079 * change), but no investigation has been done since inheriting the 00080 * SGI code. Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what 00081 * you are doing, however: changing it breaks the binary 00082 * compatibility!! 00083 */ 00084 00085 #ifndef _GLIBCXX_DEQUE_BUF_SIZE 00086 #define _GLIBCXX_DEQUE_BUF_SIZE 512 00087 #endif 00088 00089 inline size_t 00090 __deque_buf_size(size_t __size) 00091 { return (__size < _GLIBCXX_DEQUE_BUF_SIZE 00092 ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); } 00093 00094 00095 /** 00096 * @brief A deque::iterator. 00097 * 00098 * Quite a bit of intelligence here. Much of the functionality of 00099 * deque is actually passed off to this class. A deque holds two 00100 * of these internally, marking its valid range. Access to 00101 * elements is done as offsets of either of those two, relying on 00102 * operator overloading in this class. 00103 * 00104 * All the functions are op overloads except for _M_set_node. 00105 */ 00106 template<typename _Tp, typename _Ref, typename _Ptr> 00107 struct _Deque_iterator 00108 { 00109 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator; 00110 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; 00111 00112 static size_t _S_buffer_size() 00113 { return __deque_buf_size(sizeof(_Tp)); } 00114 00115 typedef std::random_access_iterator_tag iterator_category; 00116 typedef _Tp value_type; 00117 typedef _Ptr pointer; 00118 typedef _Ref reference; 00119 typedef size_t size_type; 00120 typedef ptrdiff_t difference_type; 00121 typedef _Tp** _Map_pointer; 00122 typedef _Deque_iterator _Self; 00123 00124 _Tp* _M_cur; 00125 _Tp* _M_first; 00126 _Tp* _M_last; 00127 _Map_pointer _M_node; 00128 00129 _Deque_iterator(_Tp* __x, _Map_pointer __y) 00130 : _M_cur(__x), _M_first(*__y), 00131 _M_last(*__y + _S_buffer_size()), _M_node(__y) { } 00132 00133 _Deque_iterator() 00134 : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) { } 00135 00136 _Deque_iterator(const iterator& __x) 00137 : _M_cur(__x._M_cur), _M_first(__x._M_first), 00138 _M_last(__x._M_last), _M_node(__x._M_node) { } 00139 00140 reference 00141 operator*() const 00142 { return *_M_cur; } 00143 00144 pointer 00145 operator->() const 00146 { return _M_cur; } 00147 00148 _Self& 00149 operator++() 00150 { 00151 ++_M_cur; 00152 if (_M_cur == _M_last) 00153 { 00154 _M_set_node(_M_node + 1); 00155 _M_cur = _M_first; 00156 } 00157 return *this; 00158 } 00159 00160 _Self 00161 operator++(int) 00162 { 00163 _Self __tmp = *this; 00164 ++*this; 00165 return __tmp; 00166 } 00167 00168 _Self& 00169 operator--() 00170 { 00171 if (_M_cur == _M_first) 00172 { 00173 _M_set_node(_M_node - 1); 00174 _M_cur = _M_last; 00175 } 00176 --_M_cur; 00177 return *this; 00178 } 00179 00180 _Self 00181 operator--(int) 00182 { 00183 _Self __tmp = *this; 00184 --*this; 00185 return __tmp; 00186 } 00187 00188 _Self& 00189 operator+=(difference_type __n) 00190 { 00191 const difference_type __offset = __n + (_M_cur - _M_first); 00192 if (__offset >= 0 && __offset < difference_type(_S_buffer_size())) 00193 _M_cur += __n; 00194 else 00195 { 00196 const difference_type __node_offset = 00197 __offset > 0 ? __offset / difference_type(_S_buffer_size()) 00198 : -difference_type((-__offset - 1) 00199 / _S_buffer_size()) - 1; 00200 _M_set_node(_M_node + __node_offset); 00201 _M_cur = _M_first + (__offset - __node_offset 00202 * difference_type(_S_buffer_size())); 00203 } 00204 return *this; 00205 } 00206 00207 _Self 00208 operator+(difference_type __n) const 00209 { 00210 _Self __tmp = *this; 00211 return __tmp += __n; 00212 } 00213 00214 _Self& 00215 operator-=(difference_type __n) 00216 { return *this += -__n; } 00217 00218 _Self 00219 operator-(difference_type __n) const 00220 { 00221 _Self __tmp = *this; 00222 return __tmp -= __n; 00223 } 00224 00225 reference 00226 operator[](difference_type __n) const 00227 { return *(*this + __n); } 00228 00229 /** 00230 * Prepares to traverse new_node. Sets everything except 00231 * _M_cur, which should therefore be set by the caller 00232 * immediately afterwards, based on _M_first and _M_last. 00233 */ 00234 void 00235 _M_set_node(_Map_pointer __new_node) 00236 { 00237 _M_node = __new_node; 00238 _M_first = *__new_node; 00239 _M_last = _M_first + difference_type(_S_buffer_size()); 00240 } 00241 }; 00242 00243 // Note: we also provide overloads whose operands are of the same type in 00244 // order to avoid ambiguous overload resolution when std::rel_ops operators 00245 // are in scope (for additional details, see libstdc++/3628) 00246 template<typename _Tp, typename _Ref, typename _Ptr> 00247 inline bool 00248 operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00249 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00250 { return __x._M_cur == __y._M_cur; } 00251 00252 template<typename _Tp, typename _RefL, typename _PtrL, 00253 typename _RefR, typename _PtrR> 00254 inline bool 00255 operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00256 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00257 { return __x._M_cur == __y._M_cur; } 00258 00259 template<typename _Tp, typename _Ref, typename _Ptr> 00260 inline bool 00261 operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00262 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00263 { return !(__x == __y); } 00264 00265 template<typename _Tp, typename _RefL, typename _PtrL, 00266 typename _RefR, typename _PtrR> 00267 inline bool 00268 operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00269 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00270 { return !(__x == __y); } 00271 00272 template<typename _Tp, typename _Ref, typename _Ptr> 00273 inline bool 00274 operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00275 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00276 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) 00277 : (__x._M_node < __y._M_node); } 00278 00279 template<typename _Tp, typename _RefL, typename _PtrL, 00280 typename _RefR, typename _PtrR> 00281 inline bool 00282 operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00283 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00284 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) 00285 : (__x._M_node < __y._M_node); } 00286 00287 template<typename _Tp, typename _Ref, typename _Ptr> 00288 inline bool 00289 operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00290 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00291 { return __y < __x; } 00292 00293 template<typename _Tp, typename _RefL, typename _PtrL, 00294 typename _RefR, typename _PtrR> 00295 inline bool 00296 operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00297 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00298 { return __y < __x; } 00299 00300 template<typename _Tp, typename _Ref, typename _Ptr> 00301 inline bool 00302 operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00303 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00304 { return !(__y < __x); } 00305 00306 template<typename _Tp, typename _RefL, typename _PtrL, 00307 typename _RefR, typename _PtrR> 00308 inline bool 00309 operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00310 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00311 { return !(__y < __x); } 00312 00313 template<typename _Tp, typename _Ref, typename _Ptr> 00314 inline bool 00315 operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00316 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00317 { return !(__x < __y); } 00318 00319 template<typename _Tp, typename _RefL, typename _PtrL, 00320 typename _RefR, typename _PtrR> 00321 inline bool 00322 operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00323 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00324 { return !(__x < __y); } 00325 00326 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00327 // According to the resolution of DR179 not only the various comparison 00328 // operators but also operator- must accept mixed iterator/const_iterator 00329 // parameters. 00330 template<typename _Tp, typename _Ref, typename _Ptr> 00331 inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type 00332 operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00333 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00334 { 00335 return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type 00336 (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size()) 00337 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) 00338 + (__y._M_last - __y._M_cur); 00339 } 00340 00341 template<typename _Tp, typename _RefL, typename _PtrL, 00342 typename _RefR, typename _PtrR> 00343 inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type 00344 operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00345 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00346 { 00347 return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type 00348 (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size()) 00349 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) 00350 + (__y._M_last - __y._M_cur); 00351 } 00352 00353 template<typename _Tp, typename _Ref, typename _Ptr> 00354 inline _Deque_iterator<_Tp, _Ref, _Ptr> 00355 operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x) 00356 { return __x + __n; } 00357 00358 template<typename _Tp> 00359 void 00360 fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&, 00361 const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&); 00362 00363 template<typename _Tp> 00364 _Deque_iterator<_Tp, _Tp&, _Tp*> 00365 copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00366 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00367 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00368 00369 template<typename _Tp> 00370 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00371 copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00372 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00373 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00374 { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first), 00375 _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last), 00376 __result); } 00377 00378 template<typename _Tp> 00379 _Deque_iterator<_Tp, _Tp&, _Tp*> 00380 copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00381 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00382 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00383 00384 template<typename _Tp> 00385 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00386 copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00387 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00388 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00389 { return std::copy_backward(_Deque_iterator<_Tp, 00390 const _Tp&, const _Tp*>(__first), 00391 _Deque_iterator<_Tp, 00392 const _Tp&, const _Tp*>(__last), 00393 __result); } 00394 00395 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00396 template<typename _Tp> 00397 _Deque_iterator<_Tp, _Tp&, _Tp*> 00398 move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00399 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00400 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00401 00402 template<typename _Tp> 00403 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00404 move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00405 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00406 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00407 { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first), 00408 _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last), 00409 __result); } 00410 00411 template<typename _Tp> 00412 _Deque_iterator<_Tp, _Tp&, _Tp*> 00413 move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00414 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00415 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00416 00417 template<typename _Tp> 00418 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00419 move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00420 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00421 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00422 { return std::move_backward(_Deque_iterator<_Tp, 00423 const _Tp&, const _Tp*>(__first), 00424 _Deque_iterator<_Tp, 00425 const _Tp&, const _Tp*>(__last), 00426 __result); } 00427 #endif 00428 00429 /** 00430 * Deque base class. This class provides the unified face for %deque's 00431 * allocation. This class's constructor and destructor allocate and 00432 * deallocate (but do not initialize) storage. This makes %exception 00433 * safety easier. 00434 * 00435 * Nothing in this class ever constructs or destroys an actual Tp element. 00436 * (Deque handles that itself.) Only/All memory management is performed 00437 * here. 00438 */ 00439 template<typename _Tp, typename _Alloc> 00440 class _Deque_base 00441 { 00442 public: 00443 typedef _Alloc allocator_type; 00444 00445 allocator_type 00446 get_allocator() const _GLIBCXX_NOEXCEPT 00447 { return allocator_type(_M_get_Tp_allocator()); } 00448 00449 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator; 00450 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; 00451 00452 _Deque_base() 00453 : _M_impl() 00454 { _M_initialize_map(0); } 00455 00456 _Deque_base(size_t __num_elements) 00457 : _M_impl() 00458 { _M_initialize_map(__num_elements); } 00459 00460 _Deque_base(const allocator_type& __a, size_t __num_elements) 00461 : _M_impl(__a) 00462 { _M_initialize_map(__num_elements); } 00463 00464 _Deque_base(const allocator_type& __a) 00465 : _M_impl(__a) 00466 { } 00467 00468 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00469 _Deque_base(_Deque_base&& __x) 00470 : _M_impl(std::move(__x._M_get_Tp_allocator())) 00471 { 00472 _M_initialize_map(0); 00473 if (__x._M_impl._M_map) 00474 { 00475 std::swap(this->_M_impl._M_start, __x._M_impl._M_start); 00476 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish); 00477 std::swap(this->_M_impl._M_map, __x._M_impl._M_map); 00478 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size); 00479 } 00480 } 00481 #endif 00482 00483 ~_Deque_base(); 00484 00485 protected: 00486 //This struct encapsulates the implementation of the std::deque 00487 //standard container and at the same time makes use of the EBO 00488 //for empty allocators. 00489 typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type; 00490 00491 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type; 00492 00493 struct _Deque_impl 00494 : public _Tp_alloc_type 00495 { 00496 _Tp** _M_map; 00497 size_t _M_map_size; 00498 iterator _M_start; 00499 iterator _M_finish; 00500 00501 _Deque_impl() 00502 : _Tp_alloc_type(), _M_map(0), _M_map_size(0), 00503 _M_start(), _M_finish() 00504 { } 00505 00506 _Deque_impl(const _Tp_alloc_type& __a) 00507 : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0), 00508 _M_start(), _M_finish() 00509 { } 00510 00511 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00512 _Deque_impl(_Tp_alloc_type&& __a) 00513 : _Tp_alloc_type(std::move(__a)), _M_map(0), _M_map_size(0), 00514 _M_start(), _M_finish() 00515 { } 00516 #endif 00517 }; 00518 00519 _Tp_alloc_type& 00520 _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT 00521 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); } 00522 00523 const _Tp_alloc_type& 00524 _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT 00525 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); } 00526 00527 _Map_alloc_type 00528 _M_get_map_allocator() const _GLIBCXX_NOEXCEPT 00529 { return _Map_alloc_type(_M_get_Tp_allocator()); } 00530 00531 _Tp* 00532 _M_allocate_node() 00533 { 00534 return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp))); 00535 } 00536 00537 void 00538 _M_deallocate_node(_Tp* __p) 00539 { 00540 _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp))); 00541 } 00542 00543 _Tp** 00544 _M_allocate_map(size_t __n) 00545 { return _M_get_map_allocator().allocate(__n); } 00546 00547 void 00548 _M_deallocate_map(_Tp** __p, size_t __n) 00549 { _M_get_map_allocator().deallocate(__p, __n); } 00550 00551 protected: 00552 void _M_initialize_map(size_t); 00553 void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish); 00554 void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish); 00555 enum { _S_initial_map_size = 8 }; 00556 00557 _Deque_impl _M_impl; 00558 }; 00559 00560 template<typename _Tp, typename _Alloc> 00561 _Deque_base<_Tp, _Alloc>:: 00562 ~_Deque_base() 00563 { 00564 if (this->_M_impl._M_map) 00565 { 00566 _M_destroy_nodes(this->_M_impl._M_start._M_node, 00567 this->_M_impl._M_finish._M_node + 1); 00568 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); 00569 } 00570 } 00571 00572 /** 00573 * @brief Layout storage. 00574 * @param __num_elements The count of T's for which to allocate space 00575 * at first. 00576 * @return Nothing. 00577 * 00578 * The initial underlying memory layout is a bit complicated... 00579 */ 00580 template<typename _Tp, typename _Alloc> 00581 void 00582 _Deque_base<_Tp, _Alloc>:: 00583 _M_initialize_map(size_t __num_elements) 00584 { 00585 const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp)) 00586 + 1); 00587 00588 this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size, 00589 size_t(__num_nodes + 2)); 00590 this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size); 00591 00592 // For "small" maps (needing less than _M_map_size nodes), allocation 00593 // starts in the middle elements and grows outwards. So nstart may be 00594 // the beginning of _M_map, but for small maps it may be as far in as 00595 // _M_map+3. 00596 00597 _Tp** __nstart = (this->_M_impl._M_map 00598 + (this->_M_impl._M_map_size - __num_nodes) / 2); 00599 _Tp** __nfinish = __nstart + __num_nodes; 00600 00601 __try 00602 { _M_create_nodes(__nstart, __nfinish); } 00603 __catch(...) 00604 { 00605 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); 00606 this->_M_impl._M_map = 0; 00607 this->_M_impl._M_map_size = 0; 00608 __throw_exception_again; 00609 } 00610 00611 this->_M_impl._M_start._M_set_node(__nstart); 00612 this->_M_impl._M_finish._M_set_node(__nfinish - 1); 00613 this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first; 00614 this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first 00615 + __num_elements 00616 % __deque_buf_size(sizeof(_Tp))); 00617 } 00618 00619 template<typename _Tp, typename _Alloc> 00620 void 00621 _Deque_base<_Tp, _Alloc>:: 00622 _M_create_nodes(_Tp** __nstart, _Tp** __nfinish) 00623 { 00624 _Tp** __cur; 00625 __try 00626 { 00627 for (__cur = __nstart; __cur < __nfinish; ++__cur) 00628 *__cur = this->_M_allocate_node(); 00629 } 00630 __catch(...) 00631 { 00632 _M_destroy_nodes(__nstart, __cur); 00633 __throw_exception_again; 00634 } 00635 } 00636 00637 template<typename _Tp, typename _Alloc> 00638 void 00639 _Deque_base<_Tp, _Alloc>:: 00640 _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish) 00641 { 00642 for (_Tp** __n = __nstart; __n < __nfinish; ++__n) 00643 _M_deallocate_node(*__n); 00644 } 00645 00646 /** 00647 * @brief A standard container using fixed-size memory allocation and 00648 * constant-time manipulation of elements at either end. 00649 * 00650 * @ingroup sequences 00651 * 00652 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00653 * <a href="tables.html#66">reversible container</a>, and a 00654 * <a href="tables.html#67">sequence</a>, including the 00655 * <a href="tables.html#68">optional sequence requirements</a>. 00656 * 00657 * In previous HP/SGI versions of deque, there was an extra template 00658 * parameter so users could control the node size. This extension turned 00659 * out to violate the C++ standard (it can be detected using template 00660 * template parameters), and it was removed. 00661 * 00662 * Here's how a deque<Tp> manages memory. Each deque has 4 members: 00663 * 00664 * - Tp** _M_map 00665 * - size_t _M_map_size 00666 * - iterator _M_start, _M_finish 00667 * 00668 * map_size is at least 8. %map is an array of map_size 00669 * pointers-to-@a nodes. (The name %map has nothing to do with the 00670 * std::map class, and @b nodes should not be confused with 00671 * std::list's usage of @a node.) 00672 * 00673 * A @a node has no specific type name as such, but it is referred 00674 * to as @a node in this file. It is a simple array-of-Tp. If Tp 00675 * is very large, there will be one Tp element per node (i.e., an 00676 * @a array of one). For non-huge Tp's, node size is inversely 00677 * related to Tp size: the larger the Tp, the fewer Tp's will fit 00678 * in a node. The goal here is to keep the total size of a node 00679 * relatively small and constant over different Tp's, to improve 00680 * allocator efficiency. 00681 * 00682 * Not every pointer in the %map array will point to a node. If 00683 * the initial number of elements in the deque is small, the 00684 * /middle/ %map pointers will be valid, and the ones at the edges 00685 * will be unused. This same situation will arise as the %map 00686 * grows: available %map pointers, if any, will be on the ends. As 00687 * new nodes are created, only a subset of the %map's pointers need 00688 * to be copied @a outward. 00689 * 00690 * Class invariants: 00691 * - For any nonsingular iterator i: 00692 * - i.node points to a member of the %map array. (Yes, you read that 00693 * correctly: i.node does not actually point to a node.) The member of 00694 * the %map array is what actually points to the node. 00695 * - i.first == *(i.node) (This points to the node (first Tp element).) 00696 * - i.last == i.first + node_size 00697 * - i.cur is a pointer in the range [i.first, i.last). NOTE: 00698 * the implication of this is that i.cur is always a dereferenceable 00699 * pointer, even if i is a past-the-end iterator. 00700 * - Start and Finish are always nonsingular iterators. NOTE: this 00701 * means that an empty deque must have one node, a deque with <N 00702 * elements (where N is the node buffer size) must have one node, a 00703 * deque with N through (2N-1) elements must have two nodes, etc. 00704 * - For every node other than start.node and finish.node, every 00705 * element in the node is an initialized object. If start.node == 00706 * finish.node, then [start.cur, finish.cur) are initialized 00707 * objects, and the elements outside that range are uninitialized 00708 * storage. Otherwise, [start.cur, start.last) and [finish.first, 00709 * finish.cur) are initialized objects, and [start.first, start.cur) 00710 * and [finish.cur, finish.last) are uninitialized storage. 00711 * - [%map, %map + map_size) is a valid, non-empty range. 00712 * - [start.node, finish.node] is a valid range contained within 00713 * [%map, %map + map_size). 00714 * - A pointer in the range [%map, %map + map_size) points to an allocated 00715 * node if and only if the pointer is in the range 00716 * [start.node, finish.node]. 00717 * 00718 * Here's the magic: nothing in deque is @b aware of the discontiguous 00719 * storage! 00720 * 00721 * The memory setup and layout occurs in the parent, _Base, and the iterator 00722 * class is entirely responsible for @a leaping from one node to the next. 00723 * All the implementation routines for deque itself work only through the 00724 * start and finish iterators. This keeps the routines simple and sane, 00725 * and we can use other standard algorithms as well. 00726 */ 00727 template<typename _Tp, typename _Alloc = std::allocator<_Tp> > 00728 class deque : protected _Deque_base<_Tp, _Alloc> 00729 { 00730 // concept requirements 00731 typedef typename _Alloc::value_type _Alloc_value_type; 00732 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00733 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept) 00734 00735 typedef _Deque_base<_Tp, _Alloc> _Base; 00736 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type; 00737 00738 public: 00739 typedef _Tp value_type; 00740 typedef typename _Tp_alloc_type::pointer pointer; 00741 typedef typename _Tp_alloc_type::const_pointer const_pointer; 00742 typedef typename _Tp_alloc_type::reference reference; 00743 typedef typename _Tp_alloc_type::const_reference const_reference; 00744 typedef typename _Base::iterator iterator; 00745 typedef typename _Base::const_iterator const_iterator; 00746 typedef std::reverse_iterator<const_iterator> const_reverse_iterator; 00747 typedef std::reverse_iterator<iterator> reverse_iterator; 00748 typedef size_t size_type; 00749 typedef ptrdiff_t difference_type; 00750 typedef _Alloc allocator_type; 00751 00752 protected: 00753 typedef pointer* _Map_pointer; 00754 00755 static size_t _S_buffer_size() 00756 { return __deque_buf_size(sizeof(_Tp)); } 00757 00758 // Functions controlling memory layout, and nothing else. 00759 using _Base::_M_initialize_map; 00760 using _Base::_M_create_nodes; 00761 using _Base::_M_destroy_nodes; 00762 using _Base::_M_allocate_node; 00763 using _Base::_M_deallocate_node; 00764 using _Base::_M_allocate_map; 00765 using _Base::_M_deallocate_map; 00766 using _Base::_M_get_Tp_allocator; 00767 00768 /** 00769 * A total of four data members accumulated down the hierarchy. 00770 * May be accessed via _M_impl.* 00771 */ 00772 using _Base::_M_impl; 00773 00774 public: 00775 // [23.2.1.1] construct/copy/destroy 00776 // (assign() and get_allocator() are also listed in this section) 00777 /** 00778 * @brief Default constructor creates no elements. 00779 */ 00780 deque() 00781 : _Base() { } 00782 00783 /** 00784 * @brief Creates a %deque with no elements. 00785 * @param __a An allocator object. 00786 */ 00787 explicit 00788 deque(const allocator_type& __a) 00789 : _Base(__a, 0) { } 00790 00791 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00792 /** 00793 * @brief Creates a %deque with default constructed elements. 00794 * @param __n The number of elements to initially create. 00795 * 00796 * This constructor fills the %deque with @a n default 00797 * constructed elements. 00798 */ 00799 explicit 00800 deque(size_type __n) 00801 : _Base(__n) 00802 { _M_default_initialize(); } 00803 00804 /** 00805 * @brief Creates a %deque with copies of an exemplar element. 00806 * @param __n The number of elements to initially create. 00807 * @param __value An element to copy. 00808 * @param __a An allocator. 00809 * 00810 * This constructor fills the %deque with @a __n copies of @a __value. 00811 */ 00812 deque(size_type __n, const value_type& __value, 00813 const allocator_type& __a = allocator_type()) 00814 : _Base(__a, __n) 00815 { _M_fill_initialize(__value); } 00816 #else 00817 /** 00818 * @brief Creates a %deque with copies of an exemplar element. 00819 * @param __n The number of elements to initially create. 00820 * @param __value An element to copy. 00821 * @param __a An allocator. 00822 * 00823 * This constructor fills the %deque with @a __n copies of @a __value. 00824 */ 00825 explicit 00826 deque(size_type __n, const value_type& __value = value_type(), 00827 const allocator_type& __a = allocator_type()) 00828 : _Base(__a, __n) 00829 { _M_fill_initialize(__value); } 00830 #endif 00831 00832 /** 00833 * @brief %Deque copy constructor. 00834 * @param __x A %deque of identical element and allocator types. 00835 * 00836 * The newly-created %deque uses a copy of the allocation object used 00837 * by @a __x. 00838 */ 00839 deque(const deque& __x) 00840 : _Base(__x._M_get_Tp_allocator(), __x.size()) 00841 { std::__uninitialized_copy_a(__x.begin(), __x.end(), 00842 this->_M_impl._M_start, 00843 _M_get_Tp_allocator()); } 00844 00845 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00846 /** 00847 * @brief %Deque move constructor. 00848 * @param __x A %deque of identical element and allocator types. 00849 * 00850 * The newly-created %deque contains the exact contents of @a __x. 00851 * The contents of @a __x are a valid, but unspecified %deque. 00852 */ 00853 deque(deque&& __x) 00854 : _Base(std::move(__x)) { } 00855 00856 /** 00857 * @brief Builds a %deque from an initializer list. 00858 * @param __l An initializer_list. 00859 * @param __a An allocator object. 00860 * 00861 * Create a %deque consisting of copies of the elements in the 00862 * initializer_list @a __l. 00863 * 00864 * This will call the element type's copy constructor N times 00865 * (where N is __l.size()) and do no memory reallocation. 00866 */ 00867 deque(initializer_list<value_type> __l, 00868 const allocator_type& __a = allocator_type()) 00869 : _Base(__a) 00870 { 00871 _M_range_initialize(__l.begin(), __l.end(), 00872 random_access_iterator_tag()); 00873 } 00874 #endif 00875 00876 /** 00877 * @brief Builds a %deque from a range. 00878 * @param __first An input iterator. 00879 * @param __last An input iterator. 00880 * @param __a An allocator object. 00881 * 00882 * Create a %deque consisting of copies of the elements from [__first, 00883 * __last). 00884 * 00885 * If the iterators are forward, bidirectional, or random-access, then 00886 * this will call the elements' copy constructor N times (where N is 00887 * distance(__first,__last)) and do no memory reallocation. But if only 00888 * input iterators are used, then this will do at most 2N calls to the 00889 * copy constructor, and logN memory reallocations. 00890 */ 00891 template<typename _InputIterator> 00892 deque(_InputIterator __first, _InputIterator __last, 00893 const allocator_type& __a = allocator_type()) 00894 : _Base(__a) 00895 { 00896 // Check whether it's an integral type. If so, it's not an iterator. 00897 typedef typename std::__is_integer<_InputIterator>::__type _Integral; 00898 _M_initialize_dispatch(__first, __last, _Integral()); 00899 } 00900 00901 /** 00902 * The dtor only erases the elements, and note that if the elements 00903 * themselves are pointers, the pointed-to memory is not touched in any 00904 * way. Managing the pointer is the user's responsibility. 00905 */ 00906 ~deque() _GLIBCXX_NOEXCEPT 00907 { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); } 00908 00909 /** 00910 * @brief %Deque assignment operator. 00911 * @param __x A %deque of identical element and allocator types. 00912 * 00913 * All the elements of @a x are copied, but unlike the copy constructor, 00914 * the allocator object is not copied. 00915 */ 00916 deque& 00917 operator=(const deque& __x); 00918 00919 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00920 /** 00921 * @brief %Deque move assignment operator. 00922 * @param __x A %deque of identical element and allocator types. 00923 * 00924 * The contents of @a __x are moved into this deque (without copying). 00925 * @a __x is a valid, but unspecified %deque. 00926 */ 00927 deque& 00928 operator=(deque&& __x) 00929 { 00930 // NB: DR 1204. 00931 // NB: DR 675. 00932 this->clear(); 00933 this->swap(__x); 00934 return *this; 00935 } 00936 00937 /** 00938 * @brief Assigns an initializer list to a %deque. 00939 * @param __l An initializer_list. 00940 * 00941 * This function fills a %deque with copies of the elements in the 00942 * initializer_list @a __l. 00943 * 00944 * Note that the assignment completely changes the %deque and that the 00945 * resulting %deque's size is the same as the number of elements 00946 * assigned. Old data may be lost. 00947 */ 00948 deque& 00949 operator=(initializer_list<value_type> __l) 00950 { 00951 this->assign(__l.begin(), __l.end()); 00952 return *this; 00953 } 00954 #endif 00955 00956 /** 00957 * @brief Assigns a given value to a %deque. 00958 * @param __n Number of elements to be assigned. 00959 * @param __val Value to be assigned. 00960 * 00961 * This function fills a %deque with @a n copies of the given 00962 * value. Note that the assignment completely changes the 00963 * %deque and that the resulting %deque's size is the same as 00964 * the number of elements assigned. Old data may be lost. 00965 */ 00966 void 00967 assign(size_type __n, const value_type& __val) 00968 { _M_fill_assign(__n, __val); } 00969 00970 /** 00971 * @brief Assigns a range to a %deque. 00972 * @param __first An input iterator. 00973 * @param __last An input iterator. 00974 * 00975 * This function fills a %deque with copies of the elements in the 00976 * range [__first,__last). 00977 * 00978 * Note that the assignment completely changes the %deque and that the 00979 * resulting %deque's size is the same as the number of elements 00980 * assigned. Old data may be lost. 00981 */ 00982 template<typename _InputIterator> 00983 void 00984 assign(_InputIterator __first, _InputIterator __last) 00985 { 00986 typedef typename std::__is_integer<_InputIterator>::__type _Integral; 00987 _M_assign_dispatch(__first, __last, _Integral()); 00988 } 00989 00990 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00991 /** 00992 * @brief Assigns an initializer list to a %deque. 00993 * @param __l An initializer_list. 00994 * 00995 * This function fills a %deque with copies of the elements in the 00996 * initializer_list @a __l. 00997 * 00998 * Note that the assignment completely changes the %deque and that the 00999 * resulting %deque's size is the same as the number of elements 01000 * assigned. Old data may be lost. 01001 */ 01002 void 01003 assign(initializer_list<value_type> __l) 01004 { this->assign(__l.begin(), __l.end()); } 01005 #endif 01006 01007 /// Get a copy of the memory allocation object. 01008 allocator_type 01009 get_allocator() const _GLIBCXX_NOEXCEPT 01010 { return _Base::get_allocator(); } 01011 01012 // iterators 01013 /** 01014 * Returns a read/write iterator that points to the first element in the 01015 * %deque. Iteration is done in ordinary element order. 01016 */ 01017 iterator 01018 begin() _GLIBCXX_NOEXCEPT 01019 { return this->_M_impl._M_start; } 01020 01021 /** 01022 * Returns a read-only (constant) iterator that points to the first 01023 * element in the %deque. Iteration is done in ordinary element order. 01024 */ 01025 const_iterator 01026 begin() const _GLIBCXX_NOEXCEPT 01027 { return this->_M_impl._M_start; } 01028 01029 /** 01030 * Returns a read/write iterator that points one past the last 01031 * element in the %deque. Iteration is done in ordinary 01032 * element order. 01033 */ 01034 iterator 01035 end() _GLIBCXX_NOEXCEPT 01036 { return this->_M_impl._M_finish; } 01037 01038 /** 01039 * Returns a read-only (constant) iterator that points one past 01040 * the last element in the %deque. Iteration is done in 01041 * ordinary element order. 01042 */ 01043 const_iterator 01044 end() const _GLIBCXX_NOEXCEPT 01045 { return this->_M_impl._M_finish; } 01046 01047 /** 01048 * Returns a read/write reverse iterator that points to the 01049 * last element in the %deque. Iteration is done in reverse 01050 * element order. 01051 */ 01052 reverse_iterator 01053 rbegin() _GLIBCXX_NOEXCEPT 01054 { return reverse_iterator(this->_M_impl._M_finish); } 01055 01056 /** 01057 * Returns a read-only (constant) reverse iterator that points 01058 * to the last element in the %deque. Iteration is done in 01059 * reverse element order. 01060 */ 01061 const_reverse_iterator 01062 rbegin() const _GLIBCXX_NOEXCEPT 01063 { return const_reverse_iterator(this->_M_impl._M_finish); } 01064 01065 /** 01066 * Returns a read/write reverse iterator that points to one 01067 * before the first element in the %deque. Iteration is done 01068 * in reverse element order. 01069 */ 01070 reverse_iterator 01071 rend() _GLIBCXX_NOEXCEPT 01072 { return reverse_iterator(this->_M_impl._M_start); } 01073 01074 /** 01075 * Returns a read-only (constant) reverse iterator that points 01076 * to one before the first element in the %deque. Iteration is 01077 * done in reverse element order. 01078 */ 01079 const_reverse_iterator 01080 rend() const _GLIBCXX_NOEXCEPT 01081 { return const_reverse_iterator(this->_M_impl._M_start); } 01082 01083 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 01084 /** 01085 * Returns a read-only (constant) iterator that points to the first 01086 * element in the %deque. Iteration is done in ordinary element order. 01087 */ 01088 const_iterator 01089 cbegin() const noexcept 01090 { return this->_M_impl._M_start; } 01091 01092 /** 01093 * Returns a read-only (constant) iterator that points one past 01094 * the last element in the %deque. Iteration is done in 01095 * ordinary element order. 01096 */ 01097 const_iterator 01098 cend() const noexcept 01099 { return this->_M_impl._M_finish; } 01100 01101 /** 01102 * Returns a read-only (constant) reverse iterator that points 01103 * to the last element in the %deque. Iteration is done in 01104 * reverse element order. 01105 */ 01106 const_reverse_iterator 01107 crbegin() const noexcept 01108 { return const_reverse_iterator(this->_M_impl._M_finish); } 01109 01110 /** 01111 * Returns a read-only (constant) reverse iterator that points 01112 * to one before the first element in the %deque. Iteration is 01113 * done in reverse element order. 01114 */ 01115 const_reverse_iterator 01116 crend() const noexcept 01117 { return const_reverse_iterator(this->_M_impl._M_start); } 01118 #endif 01119 01120 // [23.2.1.2] capacity 01121 /** Returns the number of elements in the %deque. */ 01122 size_type 01123 size() const _GLIBCXX_NOEXCEPT 01124 { return this->_M_impl._M_finish - this->_M_impl._M_start; } 01125 01126 /** Returns the size() of the largest possible %deque. */ 01127 size_type 01128 max_size() const _GLIBCXX_NOEXCEPT 01129 { return _M_get_Tp_allocator().max_size(); } 01130 01131 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 01132 /** 01133 * @brief Resizes the %deque to the specified number of elements. 01134 * @param __new_size Number of elements the %deque should contain. 01135 * 01136 * This function will %resize the %deque to the specified 01137 * number of elements. If the number is smaller than the 01138 * %deque's current size the %deque is truncated, otherwise 01139 * default constructed elements are appended. 01140 */ 01141 void 01142 resize(size_type __new_size) 01143 { 01144 const size_type __len = size(); 01145 if (__new_size > __len) 01146 _M_default_append(__new_size - __len); 01147 else if (__new_size < __len) 01148 _M_erase_at_end(this->_M_impl._M_start 01149 + difference_type(__new_size)); 01150 } 01151 01152 /** 01153 * @brief Resizes the %deque to the specified number of elements. 01154 * @param __new_size Number of elements the %deque should contain. 01155 * @param __x Data with which new elements should be populated. 01156 * 01157 * This function will %resize the %deque to the specified 01158 * number of elements. If the number is smaller than the 01159 * %deque's current size the %deque is truncated, otherwise the 01160 * %deque is extended and new elements are populated with given 01161 * data. 01162 */ 01163 void 01164 resize(size_type __new_size, const value_type& __x) 01165 { 01166 const size_type __len = size(); 01167 if (__new_size > __len) 01168 insert(this->_M_impl._M_finish, __new_size - __len, __x); 01169 else if (__new_size < __len) 01170 _M_erase_at_end(this->_M_impl._M_start 01171 + difference_type(__new_size)); 01172 } 01173 #else 01174 /** 01175 * @brief Resizes the %deque to the specified number of elements. 01176 * @param __new_size Number of elements the %deque should contain. 01177 * @param __x Data with which new elements should be populated. 01178 * 01179 * This function will %resize the %deque to the specified 01180 * number of elements. If the number is smaller than the 01181 * %deque's current size the %deque is truncated, otherwise the 01182 * %deque is extended and new elements are populated with given 01183 * data. 01184 */ 01185 void 01186 resize(size_type __new_size, value_type __x = value_type()) 01187 { 01188 const size_type __len = size(); 01189 if (__new_size > __len) 01190 insert(this->_M_impl._M_finish, __new_size - __len, __x); 01191 else if (__new_size < __len) 01192 _M_erase_at_end(this->_M_impl._M_start 01193 + difference_type(__new_size)); 01194 } 01195 #endif 01196 01197 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 01198 /** A non-binding request to reduce memory use. */ 01199 void 01200 shrink_to_fit() 01201 { _M_shrink_to_fit(); } 01202 #endif 01203 01204 /** 01205 * Returns true if the %deque is empty. (Thus begin() would 01206 * equal end().) 01207 */ 01208 bool 01209 empty() const _GLIBCXX_NOEXCEPT 01210 { return this->_M_impl._M_finish == this->_M_impl._M_start; } 01211 01212 // element access 01213 /** 01214 * @brief Subscript access to the data contained in the %deque. 01215 * @param __n The index of the element for which data should be 01216 * accessed. 01217 * @return Read/write reference to data. 01218 * 01219 * This operator allows for easy, array-style, data access. 01220 * Note that data access with this operator is unchecked and 01221 * out_of_range lookups are not defined. (For checked lookups 01222 * see at().) 01223 */ 01224 reference 01225 operator[](size_type __n) 01226 { return this->_M_impl._M_start[difference_type(__n)]; } 01227 01228 /** 01229 * @brief Subscript access to the data contained in the %deque. 01230 * @param __n The index of the element for which data should be 01231 * accessed. 01232 * @return Read-only (constant) reference to data. 01233 * 01234 * This operator allows for easy, array-style, data access. 01235 * Note that data access with this operator is unchecked and 01236 * out_of_range lookups are not defined. (For checked lookups 01237 * see at().) 01238 */ 01239 const_reference 01240 operator[](size_type __n) const 01241 { return this->_M_impl._M_start[difference_type(__n)]; } 01242 01243 protected: 01244 /// Safety check used only from at(). 01245 void 01246 _M_range_check(size_type __n) const 01247 { 01248 if (__n >= this->size()) 01249 __throw_out_of_range(__N("deque::_M_range_check")); 01250 } 01251 01252 public: 01253 /** 01254 * @brief Provides access to the data contained in the %deque. 01255 * @param __n The index of the element for which data should be 01256 * accessed. 01257 * @return Read/write reference to data. 01258 * @throw std::out_of_range If @a __n is an invalid index. 01259 * 01260 * This function provides for safer data access. The parameter 01261 * is first checked that it is in the range of the deque. The 01262 * function throws out_of_range if the check fails. 01263 */ 01264 reference 01265 at(size_type __n) 01266 { 01267 _M_range_check(__n); 01268 return (*this)[__n]; 01269 } 01270 01271 /** 01272 * @brief Provides access to the data contained in the %deque. 01273 * @param __n The index of the element for which data should be 01274 * accessed. 01275 * @return Read-only (constant) reference to data. 01276 * @throw std::out_of_range If @a __n is an invalid index. 01277 * 01278 * This function provides for safer data access. The parameter is first 01279 * checked that it is in the range of the deque. The function throws 01280 * out_of_range if the check fails. 01281 */ 01282 const_reference 01283 at(size_type __n) const 01284 { 01285 _M_range_check(__n); 01286 return (*this)[__n]; 01287 } 01288 01289 /** 01290 * Returns a read/write reference to the data at the first 01291 * element of the %deque. 01292 */ 01293 reference 01294 front() 01295 { return *begin(); } 01296 01297 /** 01298 * Returns a read-only (constant) reference to the data at the first 01299 * element of the %deque. 01300 */ 01301 const_reference 01302 front() const 01303 { return *begin(); } 01304 01305 /** 01306 * Returns a read/write reference to the data at the last element of the 01307 * %deque. 01308 */ 01309 reference 01310 back() 01311 { 01312 iterator __tmp = end(); 01313 --__tmp; 01314 return *__tmp; 01315 } 01316 01317 /** 01318 * Returns a read-only (constant) reference to the data at the last 01319 * element of the %deque. 01320 */ 01321 const_reference 01322 back() const 01323 { 01324 const_iterator __tmp = end(); 01325 --__tmp; 01326 return *__tmp; 01327 } 01328 01329 // [23.2.1.2] modifiers 01330 /** 01331 * @brief Add data to the front of the %deque. 01332 * @param __x Data to be added. 01333 * 01334 * This is a typical stack operation. The function creates an 01335 * element at the front of the %deque and assigns the given 01336 * data to it. Due to the nature of a %deque this operation 01337 * can be done in constant time. 01338 */ 01339 void 01340 push_front(const value_type& __x) 01341 { 01342 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first) 01343 { 01344 this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x); 01345 --this->_M_impl._M_start._M_cur; 01346 } 01347 else 01348 _M_push_front_aux(__x); 01349 } 01350 01351 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 01352 void 01353 push_front(value_type&& __x) 01354 { emplace_front(std::move(__x)); } 01355 01356 template<typename... _Args> 01357 void 01358 emplace_front(_Args&&... __args); 01359 #endif 01360 01361 /** 01362 * @brief Add data to the end of the %deque. 01363 * @param __x Data to be added. 01364 * 01365 * This is a typical stack operation. The function creates an 01366 * element at the end of the %deque and assigns the given data 01367 * to it. Due to the nature of a %deque this operation can be 01368 * done in constant time. 01369 */ 01370 void 01371 push_back(const value_type& __x) 01372 { 01373 if (this->_M_impl._M_finish._M_cur 01374 != this->_M_impl._M_finish._M_last - 1) 01375 { 01376 this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x); 01377 ++this->_M_impl._M_finish._M_cur; 01378 } 01379 else 01380 _M_push_back_aux(__x); 01381 } 01382 01383 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 01384 void 01385 push_back(value_type&& __x) 01386 { emplace_back(std::move(__x)); } 01387 01388 template<typename... _Args> 01389 void 01390 emplace_back(_Args&&... __args); 01391 #endif 01392 01393 /** 01394 * @brief Removes first element. 01395 * 01396 * This is a typical stack operation. It shrinks the %deque by one. 01397 * 01398 * Note that no data is returned, and if the first element's data is 01399 * needed, it should be retrieved before pop_front() is called. 01400 */ 01401 void 01402 pop_front() 01403 { 01404 if (this->_M_impl._M_start._M_cur 01405 != this->_M_impl._M_start._M_last - 1) 01406 { 01407 this->_M_impl.destroy(this->_M_impl._M_start._M_cur); 01408 ++this->_M_impl._M_start._M_cur; 01409 } 01410 else 01411 _M_pop_front_aux(); 01412 } 01413 01414 /** 01415 * @brief Removes last element. 01416 * 01417 * This is a typical stack operation. It shrinks the %deque by one. 01418 * 01419 * Note that no data is returned, and if the last element's data is 01420 * needed, it should be retrieved before pop_back() is called. 01421 */ 01422 void 01423 pop_back() 01424 { 01425 if (this->_M_impl._M_finish._M_cur 01426 != this->_M_impl._M_finish._M_first) 01427 { 01428 --this->_M_impl._M_finish._M_cur; 01429 this->_M_impl.destroy(this->_M_impl._M_finish._M_cur); 01430 } 01431 else 01432 _M_pop_back_aux(); 01433 } 01434 01435 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 01436 /** 01437 * @brief Inserts an object in %deque before specified iterator. 01438 * @param __position An iterator into the %deque. 01439 * @param __args Arguments. 01440 * @return An iterator that points to the inserted data. 01441 * 01442 * This function will insert an object of type T constructed 01443 * with T(std::forward<Args>(args)...) before the specified location. 01444 */ 01445 template<typename... _Args> 01446 iterator 01447 emplace(iterator __position, _Args&&... __args); 01448 #endif 01449 01450 /** 01451 * @brief Inserts given value into %deque before specified iterator. 01452 * @param __position An iterator into the %deque. 01453 * @param __x Data to be inserted. 01454 * @return An iterator that points to the inserted data. 01455 * 01456 * This function will insert a copy of the given value before the 01457 * specified location. 01458 */ 01459 iterator 01460 insert(iterator __position, const value_type& __x); 01461 01462 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 01463 /** 01464 * @brief Inserts given rvalue into %deque before specified iterator. 01465 * @param __position An iterator into the %deque. 01466 * @param __x Data to be inserted. 01467 * @return An iterator that points to the inserted data. 01468 * 01469 * This function will insert a copy of the given rvalue before the 01470 * specified location. 01471 */ 01472 iterator 01473 insert(iterator __position, value_type&& __x) 01474 { return emplace(__position, std::move(__x)); } 01475 01476 /** 01477 * @brief Inserts an initializer list into the %deque. 01478 * @param __p An iterator into the %deque. 01479 * @param __l An initializer_list. 01480 * 01481 * This function will insert copies of the data in the 01482 * initializer_list @a __l into the %deque before the location 01483 * specified by @a __p. This is known as <em>list insert</em>. 01484 */ 01485 void 01486 insert(iterator __p, initializer_list<value_type> __l) 01487 { this->insert(__p, __l.begin(), __l.end()); } 01488 #endif 01489 01490 /** 01491 * @brief Inserts a number of copies of given data into the %deque. 01492 * @param __position An iterator into the %deque. 01493 * @param __n Number of elements to be inserted. 01494 * @param __x Data to be inserted. 01495 * 01496 * This function will insert a specified number of copies of the given 01497 * data before the location specified by @a __position. 01498 */ 01499 void 01500 insert(iterator __position, size_type __n, const value_type& __x) 01501 { _M_fill_insert(__position, __n, __x); } 01502 01503 /** 01504 * @brief Inserts a range into the %deque. 01505 * @param __position An iterator into the %deque. 01506 * @param __first An input iterator. 01507 * @param __last An input iterator. 01508 * 01509 * This function will insert copies of the data in the range 01510 * [__first,__last) into the %deque before the location specified 01511 * by @a __position. This is known as <em>range insert</em>. 01512 */ 01513 template<typename _InputIterator> 01514 void 01515 insert(iterator __position, _InputIterator __first, 01516 _InputIterator __last) 01517 { 01518 // Check whether it's an integral type. If so, it's not an iterator. 01519 typedef typename std::__is_integer<_InputIterator>::__type _Integral; 01520 _M_insert_dispatch(__position, __first, __last, _Integral()); 01521 } 01522 01523 /** 01524 * @brief Remove element at given position. 01525 * @param __position Iterator pointing to element to be erased. 01526 * @return An iterator pointing to the next element (or end()). 01527 * 01528 * This function will erase the element at the given position and thus 01529 * shorten the %deque by one. 01530 * 01531 * The user is cautioned that 01532 * this function only erases the element, and that if the element is 01533 * itself a pointer, the pointed-to memory is not touched in any way. 01534 * Managing the pointer is the user's responsibility. 01535 */ 01536 iterator 01537 erase(iterator __position); 01538 01539 /** 01540 * @brief Remove a range of elements. 01541 * @param __first Iterator pointing to the first element to be erased. 01542 * @param __last Iterator pointing to one past the last element to be 01543 * erased. 01544 * @return An iterator pointing to the element pointed to by @a last 01545 * prior to erasing (or end()). 01546 * 01547 * This function will erase the elements in the range 01548 * [__first,__last) and shorten the %deque accordingly. 01549 * 01550 * The user is cautioned that 01551 * this function only erases the elements, and that if the elements 01552 * themselves are pointers, the pointed-to memory is not touched in any 01553 * way. Managing the pointer is the user's responsibility. 01554 */ 01555 iterator 01556 erase(iterator __first, iterator __last); 01557 01558 /** 01559 * @brief Swaps data with another %deque. 01560 * @param __x A %deque of the same element and allocator types. 01561 * 01562 * This exchanges the elements between two deques in constant time. 01563 * (Four pointers, so it should be quite fast.) 01564 * Note that the global std::swap() function is specialized such that 01565 * std::swap(d1,d2) will feed to this function. 01566 */ 01567 void 01568 swap(deque& __x) 01569 { 01570 std::swap(this->_M_impl._M_start, __x._M_impl._M_start); 01571 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish); 01572 std::swap(this->_M_impl._M_map, __x._M_impl._M_map); 01573 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size); 01574 01575 // _GLIBCXX_RESOLVE_LIB_DEFECTS 01576 // 431. Swapping containers with unequal allocators. 01577 std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(), 01578 __x._M_get_Tp_allocator()); 01579 } 01580 01581 /** 01582 * Erases all the elements. Note that this function only erases the 01583 * elements, and that if the elements themselves are pointers, the 01584 * pointed-to memory is not touched in any way. Managing the pointer is 01585 * the user's responsibility. 01586 */ 01587 void 01588 clear() _GLIBCXX_NOEXCEPT 01589 { _M_erase_at_end(begin()); } 01590 01591 protected: 01592 // Internal constructor functions follow. 01593 01594 // called by the range constructor to implement [23.1.1]/9 01595 01596 // _GLIBCXX_RESOLVE_LIB_DEFECTS 01597 // 438. Ambiguity in the "do the right thing" clause 01598 template<typename _Integer> 01599 void 01600 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) 01601 { 01602 _M_initialize_map(static_cast<size_type>(__n)); 01603 _M_fill_initialize(__x); 01604 } 01605 01606 // called by the range constructor to implement [23.1.1]/9 01607 template<typename _InputIterator> 01608 void 01609 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, 01610 __false_type) 01611 { 01612 typedef typename std::iterator_traits<_InputIterator>:: 01613 iterator_category _IterCategory; 01614 _M_range_initialize(__first, __last, _IterCategory()); 01615 } 01616 01617 // called by the second initialize_dispatch above 01618 //@{ 01619 /** 01620 * @brief Fills the deque with whatever is in [first,last). 01621 * @param __first An input iterator. 01622 * @param __last An input iterator. 01623 * @return Nothing. 01624 * 01625 * If the iterators are actually forward iterators (or better), then the 01626 * memory layout can be done all at once. Else we move forward using 01627 * push_back on each value from the iterator. 01628 */ 01629 template<typename _InputIterator> 01630 void 01631 _M_range_initialize(_InputIterator __first, _InputIterator __last, 01632 std::input_iterator_tag); 01633 01634 // called by the second initialize_dispatch above 01635 template<typename _ForwardIterator> 01636 void 01637 _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, 01638 std::forward_iterator_tag); 01639 //@} 01640 01641 /** 01642 * @brief Fills the %deque with copies of value. 01643 * @param __value Initial value. 01644 * @return Nothing. 01645 * @pre _M_start and _M_finish have already been initialized, 01646 * but none of the %deque's elements have yet been constructed. 01647 * 01648 * This function is called only when the user provides an explicit size 01649 * (with or without an explicit exemplar value). 01650 */ 01651 void 01652 _M_fill_initialize(const value_type& __value); 01653 01654 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 01655 // called by deque(n). 01656 void 01657 _M_default_initialize(); 01658 #endif 01659 01660 // Internal assign functions follow. The *_aux functions do the actual 01661 // assignment work for the range versions. 01662 01663 // called by the range assign to implement [23.1.1]/9 01664 01665 // _GLIBCXX_RESOLVE_LIB_DEFECTS 01666 // 438. Ambiguity in the "do the right thing" clause 01667 template<typename _Integer> 01668 void 01669 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) 01670 { _M_fill_assign(__n, __val); } 01671 01672 // called by the range assign to implement [23.1.1]/9 01673 template<typename _InputIterator> 01674 void 01675 _M_assign_dispatch(_InputIterator __first, _InputIterator __last, 01676 __false_type) 01677 { 01678 typedef typename std::iterator_traits<_InputIterator>:: 01679 iterator_category _IterCategory; 01680 _M_assign_aux(__first, __last, _IterCategory()); 01681 } 01682 01683 // called by the second assign_dispatch above 01684 template<typename _InputIterator> 01685 void 01686 _M_assign_aux(_InputIterator __first, _InputIterator __last, 01687 std::input_iterator_tag); 01688 01689 // called by the second assign_dispatch above 01690 template<typename _ForwardIterator> 01691 void 01692 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, 01693 std::forward_iterator_tag) 01694 { 01695 const size_type __len = std::distance(__first, __last); 01696 if (__len > size()) 01697 { 01698 _ForwardIterator __mid = __first; 01699 std::advance(__mid, size()); 01700 std::copy(__first, __mid, begin()); 01701 insert(end(), __mid, __last); 01702 } 01703 else 01704 _M_erase_at_end(std::copy(__first, __last, begin())); 01705 } 01706 01707 // Called by assign(n,t), and the range assign when it turns out 01708 // to be the same thing. 01709 void 01710 _M_fill_assign(size_type __n, const value_type& __val) 01711 { 01712 if (__n > size()) 01713 { 01714 std::fill(begin(), end(), __val); 01715 insert(end(), __n - size(), __val); 01716 } 01717 else 01718 { 01719 _M_erase_at_end(begin() + difference_type(__n)); 01720 std::fill(begin(), end(), __val); 01721 } 01722 } 01723 01724 //@{ 01725 /// Helper functions for push_* and pop_*. 01726 #ifndef __GXX_EXPERIMENTAL_CXX0X__ 01727 void _M_push_back_aux(const value_type&); 01728 01729 void _M_push_front_aux(const value_type&); 01730 #else 01731 template<typename... _Args> 01732 void _M_push_back_aux(_Args&&... __args); 01733 01734 template<typename... _Args> 01735 void _M_push_front_aux(_Args&&... __args); 01736 #endif 01737 01738 void _M_pop_back_aux(); 01739 01740 void _M_pop_front_aux(); 01741 //@} 01742 01743 // Internal insert functions follow. The *_aux functions do the actual 01744 // insertion work when all shortcuts fail. 01745 01746 // called by the range insert to implement [23.1.1]/9 01747 01748 // _GLIBCXX_RESOLVE_LIB_DEFECTS 01749 // 438. Ambiguity in the "do the right thing" clause 01750 template<typename _Integer> 01751 void 01752 _M_insert_dispatch(iterator __pos, 01753 _Integer __n, _Integer __x, __true_type) 01754 { _M_fill_insert(__pos, __n, __x); } 01755 01756 // called by the range insert to implement [23.1.1]/9 01757 template<typename _InputIterator> 01758 void 01759 _M_insert_dispatch(iterator __pos, 01760 _InputIterator __first, _InputIterator __last, 01761 __false_type) 01762 { 01763 typedef typename std::iterator_traits<_InputIterator>:: 01764 iterator_category _IterCategory; 01765 _M_range_insert_aux(__pos, __first, __last, _IterCategory()); 01766 } 01767 01768 // called by the second insert_dispatch above 01769 template<typename _InputIterator> 01770 void 01771 _M_range_insert_aux(iterator __pos, _InputIterator __first, 01772 _InputIterator __last, std::input_iterator_tag); 01773 01774 // called by the second insert_dispatch above 01775 template<typename _ForwardIterator> 01776 void 01777 _M_range_insert_aux(iterator __pos, _ForwardIterator __first, 01778 _ForwardIterator __last, std::forward_iterator_tag); 01779 01780 // Called by insert(p,n,x), and the range insert when it turns out to be 01781 // the same thing. Can use fill functions in optimal situations, 01782 // otherwise passes off to insert_aux(p,n,x). 01783 void 01784 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); 01785 01786 // called by insert(p,x) 01787 #ifndef __GXX_EXPERIMENTAL_CXX0X__ 01788 iterator 01789 _M_insert_aux(iterator __pos, const value_type& __x); 01790 #else 01791 template<typename... _Args> 01792 iterator 01793 _M_insert_aux(iterator __pos, _Args&&... __args); 01794 #endif 01795 01796 // called by insert(p,n,x) via fill_insert 01797 void 01798 _M_insert_aux(iterator __pos, size_type __n, const value_type& __x); 01799 01800 // called by range_insert_aux for forward iterators 01801 template<typename _ForwardIterator> 01802 void 01803 _M_insert_aux(iterator __pos, 01804 _ForwardIterator __first, _ForwardIterator __last, 01805 size_type __n); 01806 01807 01808 // Internal erase functions follow. 01809 01810 void 01811 _M_destroy_data_aux(iterator __first, iterator __last); 01812 01813 // Called by ~deque(). 01814 // NB: Doesn't deallocate the nodes. 01815 template<typename _Alloc1> 01816 void 01817 _M_destroy_data(iterator __first, iterator __last, const _Alloc1&) 01818 { _M_destroy_data_aux(__first, __last); } 01819 01820 void 01821 _M_destroy_data(iterator __first, iterator __last, 01822 const std::allocator<_Tp>&) 01823 { 01824 if (!__has_trivial_destructor(value_type)) 01825 _M_destroy_data_aux(__first, __last); 01826 } 01827 01828 // Called by erase(q1, q2). 01829 void 01830 _M_erase_at_begin(iterator __pos) 01831 { 01832 _M_destroy_data(begin(), __pos, _M_get_Tp_allocator()); 01833 _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node); 01834 this->_M_impl._M_start = __pos; 01835 } 01836 01837 // Called by erase(q1, q2), resize(), clear(), _M_assign_aux, 01838 // _M_fill_assign, operator=. 01839 void 01840 _M_erase_at_end(iterator __pos) 01841 { 01842 _M_destroy_data(__pos, end(), _M_get_Tp_allocator()); 01843 _M_destroy_nodes(__pos._M_node + 1, 01844 this->_M_impl._M_finish._M_node + 1); 01845 this->_M_impl._M_finish = __pos; 01846 } 01847 01848 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 01849 // Called by resize(sz). 01850 void 01851 _M_default_append(size_type __n); 01852 01853 bool 01854 _M_shrink_to_fit(); 01855 #endif 01856 01857 //@{ 01858 /// Memory-handling helpers for the previous internal insert functions. 01859 iterator 01860 _M_reserve_elements_at_front(size_type __n) 01861 { 01862 const size_type __vacancies = this->_M_impl._M_start._M_cur 01863 - this->_M_impl._M_start._M_first; 01864 if (__n > __vacancies) 01865 _M_new_elements_at_front(__n - __vacancies); 01866 return this->_M_impl._M_start - difference_type(__n); 01867 } 01868 01869 iterator 01870 _M_reserve_elements_at_back(size_type __n) 01871 { 01872 const size_type __vacancies = (this->_M_impl._M_finish._M_last 01873 - this->_M_impl._M_finish._M_cur) - 1; 01874 if (__n > __vacancies) 01875 _M_new_elements_at_back(__n - __vacancies); 01876 return this->_M_impl._M_finish + difference_type(__n); 01877 } 01878 01879 void 01880 _M_new_elements_at_front(size_type __new_elements); 01881 01882 void 01883 _M_new_elements_at_back(size_type __new_elements); 01884 //@} 01885 01886 01887 //@{ 01888 /** 01889 * @brief Memory-handling helpers for the major %map. 01890 * 01891 * Makes sure the _M_map has space for new nodes. Does not 01892 * actually add the nodes. Can invalidate _M_map pointers. 01893 * (And consequently, %deque iterators.) 01894 */ 01895 void 01896 _M_reserve_map_at_back(size_type __nodes_to_add = 1) 01897 { 01898 if (__nodes_to_add + 1 > this->_M_impl._M_map_size 01899 - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map)) 01900 _M_reallocate_map(__nodes_to_add, false); 01901 } 01902 01903 void 01904 _M_reserve_map_at_front(size_type __nodes_to_add = 1) 01905 { 01906 if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node 01907 - this->_M_impl._M_map)) 01908 _M_reallocate_map(__nodes_to_add, true); 01909 } 01910 01911 void 01912 _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front); 01913 //@} 01914 }; 01915 01916 01917 /** 01918 * @brief Deque equality comparison. 01919 * @param __x A %deque. 01920 * @param __y A %deque of the same type as @a __x. 01921 * @return True iff the size and elements of the deques are equal. 01922 * 01923 * This is an equivalence relation. It is linear in the size of the 01924 * deques. Deques are considered equivalent if their sizes are equal, 01925 * and if corresponding elements compare equal. 01926 */ 01927 template<typename _Tp, typename _Alloc> 01928 inline bool 01929 operator==(const deque<_Tp, _Alloc>& __x, 01930 const deque<_Tp, _Alloc>& __y) 01931 { return __x.size() == __y.size() 01932 && std::equal(__x.begin(), __x.end(), __y.begin()); } 01933 01934 /** 01935 * @brief Deque ordering relation. 01936 * @param __x A %deque. 01937 * @param __y A %deque of the same type as @a __x. 01938 * @return True iff @a x is lexicographically less than @a __y. 01939 * 01940 * This is a total ordering relation. It is linear in the size of the 01941 * deques. The elements must be comparable with @c <. 01942 * 01943 * See std::lexicographical_compare() for how the determination is made. 01944 */ 01945 template<typename _Tp, typename _Alloc> 01946 inline bool 01947 operator<(const deque<_Tp, _Alloc>& __x, 01948 const deque<_Tp, _Alloc>& __y) 01949 { return std::lexicographical_compare(__x.begin(), __x.end(), 01950 __y.begin(), __y.end()); } 01951 01952 /// Based on operator== 01953 template<typename _Tp, typename _Alloc> 01954 inline bool 01955 operator!=(const deque<_Tp, _Alloc>& __x, 01956 const deque<_Tp, _Alloc>& __y) 01957 { return !(__x == __y); } 01958 01959 /// Based on operator< 01960 template<typename _Tp, typename _Alloc> 01961 inline bool 01962 operator>(const deque<_Tp, _Alloc>& __x, 01963 const deque<_Tp, _Alloc>& __y) 01964 { return __y < __x; } 01965 01966 /// Based on operator< 01967 template<typename _Tp, typename _Alloc> 01968 inline bool 01969 operator<=(const deque<_Tp, _Alloc>& __x, 01970 const deque<_Tp, _Alloc>& __y) 01971 { return !(__y < __x); } 01972 01973 /// Based on operator< 01974 template<typename _Tp, typename _Alloc> 01975 inline bool 01976 operator>=(const deque<_Tp, _Alloc>& __x, 01977 const deque<_Tp, _Alloc>& __y) 01978 { return !(__x < __y); } 01979 01980 /// See std::deque::swap(). 01981 template<typename _Tp, typename _Alloc> 01982 inline void 01983 swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y) 01984 { __x.swap(__y); } 01985 01986 #undef _GLIBCXX_DEQUE_BUF_SIZE 01987 01988 _GLIBCXX_END_NAMESPACE_CONTAINER 01989 } // namespace std 01990 01991 #endif /* _STL_DEQUE_H */