libstdc++
|
00001 // The template and inlines for the -*- C++ -*- slice_array class. 00002 00003 // Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2004, 2005, 2006, 2009, 00004 // 2010, 2011 Free Software Foundation, Inc. 00005 // 00006 // This file is part of the GNU ISO C++ Library. This library is free 00007 // software; you can redistribute it and/or modify it under the 00008 // terms of the GNU General Public License as published by the 00009 // Free Software Foundation; either version 3, or (at your option) 00010 // any later version. 00011 00012 // This library is distributed in the hope that it will be useful, 00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 // GNU General Public License for more details. 00016 00017 // Under Section 7 of GPL version 3, you are granted additional 00018 // permissions described in the GCC Runtime Library Exception, version 00019 // 3.1, as published by the Free Software Foundation. 00020 00021 // You should have received a copy of the GNU General Public License and 00022 // a copy of the GCC Runtime Library Exception along with this program; 00023 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00024 // <http://www.gnu.org/licenses/>. 00025 00026 /** @file bits/slice_array.h 00027 * This is an internal header file, included by other library headers. 00028 * Do not attempt to use it directly. @headername{valarray} 00029 */ 00030 00031 // Written by Gabriel Dos Reis <Gabriel.Dos-Reis@DPTMaths.ENS-Cachan.Fr> 00032 00033 #ifndef _SLICE_ARRAY_H 00034 #define _SLICE_ARRAY_H 1 00035 00036 #pragma GCC system_header 00037 00038 namespace std _GLIBCXX_VISIBILITY(default) 00039 { 00040 _GLIBCXX_BEGIN_NAMESPACE_VERSION 00041 00042 /** 00043 * @addtogroup numeric_arrays 00044 * @{ 00045 */ 00046 00047 /** 00048 * @brief Class defining one-dimensional subset of an array. 00049 * 00050 * The slice class represents a one-dimensional subset of an array, 00051 * specified by three parameters: start offset, size, and stride. The 00052 * start offset is the index of the first element of the array that is part 00053 * of the subset. The size is the total number of elements in the subset. 00054 * Stride is the distance between each successive array element to include 00055 * in the subset. 00056 * 00057 * For example, with an array of size 10, and a slice with offset 1, size 3 00058 * and stride 2, the subset consists of array elements 1, 3, and 5. 00059 */ 00060 class slice 00061 { 00062 public: 00063 /// Construct an empty slice. 00064 slice(); 00065 00066 /** 00067 * @brief Construct a slice. 00068 * 00069 * @param __o Offset in array of first element. 00070 * @param __d Number of elements in slice. 00071 * @param __s Stride between array elements. 00072 */ 00073 slice(size_t __o, size_t __d, size_t __s); 00074 00075 /// Return array offset of first slice element. 00076 size_t start() const; 00077 /// Return size of slice. 00078 size_t size() const; 00079 /// Return array stride of slice. 00080 size_t stride() const; 00081 00082 private: 00083 size_t _M_off; // offset 00084 size_t _M_sz; // size 00085 size_t _M_st; // stride unit 00086 }; 00087 00088 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00089 // 543. valarray slice default constructor 00090 inline 00091 slice::slice() 00092 : _M_off(0), _M_sz(0), _M_st(0) {} 00093 00094 inline 00095 slice::slice(size_t __o, size_t __d, size_t __s) 00096 : _M_off(__o), _M_sz(__d), _M_st(__s) {} 00097 00098 inline size_t 00099 slice::start() const 00100 { return _M_off; } 00101 00102 inline size_t 00103 slice::size() const 00104 { return _M_sz; } 00105 00106 inline size_t 00107 slice::stride() const 00108 { return _M_st; } 00109 00110 /** 00111 * @brief Reference to one-dimensional subset of an array. 00112 * 00113 * A slice_array is a reference to the actual elements of an array 00114 * specified by a slice. The way to get a slice_array is to call 00115 * operator[](slice) on a valarray. The returned slice_array then permits 00116 * carrying operations out on the referenced subset of elements in the 00117 * original valarray. For example, operator+=(valarray) will add values 00118 * to the subset of elements in the underlying valarray this slice_array 00119 * refers to. 00120 * 00121 * @param Tp Element type. 00122 */ 00123 template<typename _Tp> 00124 class slice_array 00125 { 00126 public: 00127 typedef _Tp value_type; 00128 00129 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00130 // 253. valarray helper functions are almost entirely useless 00131 00132 /// Copy constructor. Both slices refer to the same underlying array. 00133 slice_array(const slice_array&); 00134 00135 /// Assignment operator. Assigns slice elements to corresponding 00136 /// elements of @a a. 00137 slice_array& operator=(const slice_array&); 00138 00139 /// Assign slice elements to corresponding elements of @a v. 00140 void operator=(const valarray<_Tp>&) const; 00141 /// Multiply slice elements by corresponding elements of @a v. 00142 void operator*=(const valarray<_Tp>&) const; 00143 /// Divide slice elements by corresponding elements of @a v. 00144 void operator/=(const valarray<_Tp>&) const; 00145 /// Modulo slice elements by corresponding elements of @a v. 00146 void operator%=(const valarray<_Tp>&) const; 00147 /// Add corresponding elements of @a v to slice elements. 00148 void operator+=(const valarray<_Tp>&) const; 00149 /// Subtract corresponding elements of @a v from slice elements. 00150 void operator-=(const valarray<_Tp>&) const; 00151 /// Logical xor slice elements with corresponding elements of @a v. 00152 void operator^=(const valarray<_Tp>&) const; 00153 /// Logical and slice elements with corresponding elements of @a v. 00154 void operator&=(const valarray<_Tp>&) const; 00155 /// Logical or slice elements with corresponding elements of @a v. 00156 void operator|=(const valarray<_Tp>&) const; 00157 /// Left shift slice elements by corresponding elements of @a v. 00158 void operator<<=(const valarray<_Tp>&) const; 00159 /// Right shift slice elements by corresponding elements of @a v. 00160 void operator>>=(const valarray<_Tp>&) const; 00161 /// Assign all slice elements to @a t. 00162 void operator=(const _Tp &) const; 00163 // ~slice_array (); 00164 00165 template<class _Dom> 00166 void operator=(const _Expr<_Dom, _Tp>&) const; 00167 template<class _Dom> 00168 void operator*=(const _Expr<_Dom, _Tp>&) const; 00169 template<class _Dom> 00170 void operator/=(const _Expr<_Dom, _Tp>&) const; 00171 template<class _Dom> 00172 void operator%=(const _Expr<_Dom, _Tp>&) const; 00173 template<class _Dom> 00174 void operator+=(const _Expr<_Dom, _Tp>&) const; 00175 template<class _Dom> 00176 void operator-=(const _Expr<_Dom, _Tp>&) const; 00177 template<class _Dom> 00178 void operator^=(const _Expr<_Dom, _Tp>&) const; 00179 template<class _Dom> 00180 void operator&=(const _Expr<_Dom, _Tp>&) const; 00181 template<class _Dom> 00182 void operator|=(const _Expr<_Dom, _Tp>&) const; 00183 template<class _Dom> 00184 void operator<<=(const _Expr<_Dom, _Tp>&) const; 00185 template<class _Dom> 00186 void operator>>=(const _Expr<_Dom, _Tp>&) const; 00187 00188 private: 00189 friend class valarray<_Tp>; 00190 slice_array(_Array<_Tp>, const slice&); 00191 00192 const size_t _M_sz; 00193 const size_t _M_stride; 00194 const _Array<_Tp> _M_array; 00195 00196 // not implemented 00197 slice_array(); 00198 }; 00199 00200 template<typename _Tp> 00201 inline 00202 slice_array<_Tp>::slice_array(_Array<_Tp> __a, const slice& __s) 00203 : _M_sz(__s.size()), _M_stride(__s.stride()), 00204 _M_array(__a.begin() + __s.start()) {} 00205 00206 template<typename _Tp> 00207 inline 00208 slice_array<_Tp>::slice_array(const slice_array<_Tp>& a) 00209 : _M_sz(a._M_sz), _M_stride(a._M_stride), _M_array(a._M_array) {} 00210 00211 // template<typename _Tp> 00212 // inline slice_array<_Tp>::~slice_array () {} 00213 00214 template<typename _Tp> 00215 inline slice_array<_Tp>& 00216 slice_array<_Tp>::operator=(const slice_array<_Tp>& __a) 00217 { 00218 std::__valarray_copy(__a._M_array, __a._M_sz, __a._M_stride, 00219 _M_array, _M_stride); 00220 return *this; 00221 } 00222 00223 template<typename _Tp> 00224 inline void 00225 slice_array<_Tp>::operator=(const _Tp& __t) const 00226 { std::__valarray_fill(_M_array, _M_sz, _M_stride, __t); } 00227 00228 template<typename _Tp> 00229 inline void 00230 slice_array<_Tp>::operator=(const valarray<_Tp>& __v) const 00231 { std::__valarray_copy(_Array<_Tp>(__v), _M_array, _M_sz, _M_stride); } 00232 00233 template<typename _Tp> 00234 template<class _Dom> 00235 inline void 00236 slice_array<_Tp>::operator=(const _Expr<_Dom,_Tp>& __e) const 00237 { std::__valarray_copy(__e, _M_sz, _M_array, _M_stride); } 00238 00239 #undef _DEFINE_VALARRAY_OPERATOR 00240 #define _DEFINE_VALARRAY_OPERATOR(_Op,_Name) \ 00241 template<typename _Tp> \ 00242 inline void \ 00243 slice_array<_Tp>::operator _Op##=(const valarray<_Tp>& __v) const \ 00244 { \ 00245 _Array_augmented_##_Name(_M_array, _M_sz, _M_stride, _Array<_Tp>(__v));\ 00246 } \ 00247 \ 00248 template<typename _Tp> \ 00249 template<class _Dom> \ 00250 inline void \ 00251 slice_array<_Tp>::operator _Op##=(const _Expr<_Dom,_Tp>& __e) const\ 00252 { \ 00253 _Array_augmented_##_Name(_M_array, _M_stride, __e, _M_sz); \ 00254 } 00255 00256 00257 _DEFINE_VALARRAY_OPERATOR(*, __multiplies) 00258 _DEFINE_VALARRAY_OPERATOR(/, __divides) 00259 _DEFINE_VALARRAY_OPERATOR(%, __modulus) 00260 _DEFINE_VALARRAY_OPERATOR(+, __plus) 00261 _DEFINE_VALARRAY_OPERATOR(-, __minus) 00262 _DEFINE_VALARRAY_OPERATOR(^, __bitwise_xor) 00263 _DEFINE_VALARRAY_OPERATOR(&, __bitwise_and) 00264 _DEFINE_VALARRAY_OPERATOR(|, __bitwise_or) 00265 _DEFINE_VALARRAY_OPERATOR(<<, __shift_left) 00266 _DEFINE_VALARRAY_OPERATOR(>>, __shift_right) 00267 00268 #undef _DEFINE_VALARRAY_OPERATOR 00269 00270 // @} group numeric_arrays 00271 00272 _GLIBCXX_END_NAMESPACE_VERSION 00273 } // namespace 00274 00275 #endif /* _SLICE_ARRAY_H */