libstdc++
ratio
Go to the documentation of this file.
00001 // ratio -*- C++ -*-
00002 
00003 // Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the 
00007 // terms of the GNU General Public License as published by the 
00008 // Free Software Foundation; either version 3, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
00014 // GNU General Public License for more details.
00015 
00016 // Under Section 7 of GPL version 3, you are granted additional
00017 // permissions described in the GCC Runtime Library Exception, version
00018 // 3.1, as published by the Free Software Foundation.
00019 
00020 // You should have received a copy of the GNU General Public License and
00021 // a copy of the GCC Runtime Library Exception along with this program;
00022 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
00023 // <http://www.gnu.org/licenses/>.
00024 
00025 /** @file include/ratio
00026  *  This is a Standard C++ Library header.
00027  */
00028 
00029 #ifndef _GLIBCXX_RATIO
00030 #define _GLIBCXX_RATIO 1
00031 
00032 #pragma GCC system_header
00033 
00034 #ifndef __GXX_EXPERIMENTAL_CXX0X__
00035 # include <bits/c++0x_warning.h>
00036 #else
00037 
00038 #include <type_traits>
00039 #include <cstdint>
00040 
00041 #ifdef _GLIBCXX_USE_C99_STDINT_TR1
00042 
00043 namespace std _GLIBCXX_VISIBILITY(default)
00044 {
00045 _GLIBCXX_BEGIN_NAMESPACE_VERSION
00046 
00047   /**
00048    * @defgroup ratio Rational Arithmetic
00049    * @ingroup utilities
00050    *
00051    * Compile time representation of finite rational numbers.
00052    * @{
00053    */
00054 
00055   template<intmax_t _Pn>
00056     struct __static_sign
00057     : integral_constant<intmax_t, (_Pn < 0) ? -1 : 1>
00058     { };
00059 
00060   template<intmax_t _Pn>
00061     struct __static_abs
00062     : integral_constant<intmax_t, _Pn * __static_sign<_Pn>::value>
00063     { };
00064 
00065   template<intmax_t _Pn, intmax_t _Qn>
00066     struct __static_gcd;
00067  
00068   template<intmax_t _Pn, intmax_t _Qn>
00069     struct __static_gcd
00070     : __static_gcd<_Qn, (_Pn % _Qn)>
00071     { };
00072 
00073   template<intmax_t _Pn>
00074     struct __static_gcd<_Pn, 0>
00075     : integral_constant<intmax_t, __static_abs<_Pn>::value>
00076     { };
00077 
00078   template<intmax_t _Qn>
00079     struct __static_gcd<0, _Qn>
00080     : integral_constant<intmax_t, __static_abs<_Qn>::value>
00081     { };
00082 
00083   // Let c = 2^(half # of bits in an intmax_t)
00084   // then we find a1, a0, b1, b0 s.t. N = a1*c + a0, M = b1*c + b0
00085   // The multiplication of N and M becomes,
00086   // N * M = (a1 * b1)c^2 + (a0 * b1 + b0 * a1)c + a0 * b0
00087   // Multiplication is safe if each term and the sum of the terms
00088   // is representable by intmax_t.
00089   template<intmax_t _Pn, intmax_t _Qn>
00090     struct __safe_multiply
00091     {
00092     private:
00093       static const uintmax_t __c = uintmax_t(1) << (sizeof(intmax_t) * 4);
00094 
00095       static const uintmax_t __a0 = __static_abs<_Pn>::value % __c;
00096       static const uintmax_t __a1 = __static_abs<_Pn>::value / __c;
00097       static const uintmax_t __b0 = __static_abs<_Qn>::value % __c;
00098       static const uintmax_t __b1 = __static_abs<_Qn>::value / __c;
00099 
00100       static_assert(__a1 == 0 || __b1 == 0, 
00101             "overflow in multiplication");
00102       static_assert(__a0 * __b1 + __b0 * __a1 < (__c >> 1), 
00103             "overflow in multiplication");
00104       static_assert(__b0 * __a0 <= __INTMAX_MAX__, 
00105             "overflow in multiplication");
00106       static_assert((__a0 * __b1 + __b0 * __a1) * __c
00107             <= __INTMAX_MAX__ -  __b0 * __a0,
00108             "overflow in multiplication");
00109 
00110     public:
00111       static const intmax_t value = _Pn * _Qn;
00112     };
00113 
00114   // Some double-precision utilities, where numbers are represented as
00115   // __hi*2^(8*sizeof(uintmax_t)) + __lo.
00116   template<uintmax_t __hi1, uintmax_t __lo1, uintmax_t __hi2, uintmax_t __lo2>
00117     struct __big_less
00118     : integral_constant<bool, (__hi1 < __hi2
00119                    || (__hi1 == __hi2 && __lo1 < __lo2))>
00120     { };
00121 
00122   template<uintmax_t __hi1, uintmax_t __lo1, uintmax_t __hi2, uintmax_t __lo2>
00123     struct __big_add
00124     {
00125       static constexpr uintmax_t __lo = __lo1 + __lo2;
00126       static constexpr uintmax_t __hi = (__hi1 + __hi2 +
00127                      (__lo1 + __lo2 < __lo1)); // carry
00128     };
00129 
00130   // Subtract a number from a bigger one.
00131   template<uintmax_t __hi1, uintmax_t __lo1, uintmax_t __hi2, uintmax_t __lo2>
00132     struct __big_sub
00133     {
00134       static_assert(!__big_less<__hi1, __lo1, __hi2, __lo2>::value,
00135             "Internal library error");
00136       static constexpr uintmax_t __lo = __lo1 - __lo2;
00137       static constexpr uintmax_t __hi = (__hi1 - __hi2 -
00138                      (__lo1 < __lo2)); // carry
00139     };
00140 
00141   // Same principle as __safe_multiply.
00142   template<uintmax_t __x, uintmax_t __y>
00143     struct __big_mul
00144     {
00145     private:
00146       static constexpr uintmax_t __c = uintmax_t(1) << (sizeof(intmax_t) * 4);
00147       static constexpr uintmax_t __x0 = __x % __c;
00148       static constexpr uintmax_t __x1 = __x / __c;
00149       static constexpr uintmax_t __y0 = __y % __c;
00150       static constexpr uintmax_t __y1 = __y / __c;
00151       static constexpr uintmax_t __x0y0 = __x0 * __y0;
00152       static constexpr uintmax_t __x0y1 = __x0 * __y1;
00153       static constexpr uintmax_t __x1y0 = __x1 * __y0;
00154       static constexpr uintmax_t __x1y1 = __x1 * __y1;
00155       static constexpr uintmax_t __mix = __x0y1 + __x1y0; // possible carry...
00156       static constexpr uintmax_t __mix_lo = __mix * __c;
00157       static constexpr uintmax_t __mix_hi
00158       = __mix / __c + ((__mix < __x0y1) ? __c : 0); // ... added here
00159       typedef __big_add<__mix_hi, __mix_lo, __x1y1, __x0y0> _Res;
00160     public:
00161       static constexpr uintmax_t __hi = _Res::__hi;
00162       static constexpr uintmax_t __lo = _Res::__lo;
00163     };
00164 
00165   // Adapted from __udiv_qrnnd_c in longlong.h
00166   // This version assumes that the high bit of __d is 1.
00167   template<uintmax_t __n1, uintmax_t __n0, uintmax_t __d>
00168     struct __big_div_impl
00169     {
00170     private:
00171       static_assert(__d >= (uintmax_t(1) << (sizeof(intmax_t) * 8 - 1)),
00172             "Internal library error");
00173       static_assert(__n1 < __d, "Internal library error");
00174       static constexpr uintmax_t __c = uintmax_t(1) << (sizeof(intmax_t) * 4);
00175       static constexpr uintmax_t __d1 = __d / __c;
00176       static constexpr uintmax_t __d0 = __d % __c;
00177 
00178       static constexpr uintmax_t __q1x = __n1 / __d1;
00179       static constexpr uintmax_t __r1x = __n1 % __d1;
00180       static constexpr uintmax_t __m = __q1x * __d0;
00181       static constexpr uintmax_t __r1y = __r1x * __c + __n0 / __c;
00182       static constexpr uintmax_t __r1z = __r1y + __d;
00183       static constexpr uintmax_t __r1
00184       = ((__r1y < __m) ? ((__r1z >= __d) && (__r1z < __m))
00185      ? (__r1z + __d) : __r1z : __r1y) - __m;
00186       static constexpr uintmax_t __q1
00187       = __q1x - ((__r1y < __m)
00188          ? ((__r1z >= __d) && (__r1z < __m)) ? 2 : 1 : 0);
00189       static constexpr uintmax_t __q0x = __r1 / __d1;
00190       static constexpr uintmax_t __r0x = __r1 % __d1;
00191       static constexpr uintmax_t __n = __q0x * __d0;
00192       static constexpr uintmax_t __r0y = __r0x * __c + __n0 % __c;
00193       static constexpr uintmax_t __r0z = __r0y + __d;
00194       static constexpr uintmax_t __r0
00195       = ((__r0y < __n) ? ((__r0z >= __d) && (__r0z < __n))
00196      ? (__r0z + __d) : __r0z : __r0y) - __n;
00197       static constexpr uintmax_t __q0
00198       = __q0x - ((__r0y < __n) ? ((__r0z >= __d)
00199                   && (__r0z < __n)) ? 2 : 1 : 0);
00200 
00201     public:
00202       static constexpr uintmax_t __quot = __q1 * __c + __q0;
00203       static constexpr uintmax_t __rem = __r0;
00204 
00205     private:
00206       typedef __big_mul<__quot, __d> _Prod;
00207       typedef __big_add<_Prod::__hi, _Prod::__lo, 0, __rem> _Sum;
00208       static_assert(_Sum::__hi == __n1 && _Sum::__lo == __n0,
00209             "Internal library error");
00210   };
00211 
00212   template<uintmax_t __n1, uintmax_t __n0, uintmax_t __d>
00213     struct __big_div
00214     {
00215     private:
00216       static_assert(__d != 0, "Internal library error");
00217       static_assert(sizeof (uintmax_t) == sizeof (unsigned long long),
00218             "This library calls __builtin_clzll on uintmax_t, which "
00219             "is unsafe on your platform. Please complain to "
00220             "http://gcc.gnu.org/bugzilla/");
00221       static constexpr int __shift = __builtin_clzll(__d);
00222       static constexpr int __coshift_ = sizeof(uintmax_t) * 8 - __shift;
00223       static constexpr int __coshift = (__shift != 0) ? __coshift_ : 0;
00224       static constexpr uintmax_t __c1 = uintmax_t(1) << __shift;
00225       static constexpr uintmax_t __c2 = uintmax_t(1) << __coshift;
00226       static constexpr uintmax_t __new_d = __d * __c1;
00227       static constexpr uintmax_t __new_n0 = __n0 * __c1;
00228       static constexpr uintmax_t __n1_shifted = (__n1 % __d) * __c1;
00229       static constexpr uintmax_t __n0_top = (__shift != 0) ? (__n0 / __c2) : 0;
00230       static constexpr uintmax_t __new_n1 = __n1_shifted + __n0_top;
00231       typedef __big_div_impl<__new_n1, __new_n0, __new_d> _Res;
00232 
00233     public:
00234       static constexpr uintmax_t __quot_hi = __n1 / __d;
00235       static constexpr uintmax_t __quot_lo = _Res::__quot;
00236       static constexpr uintmax_t __rem = _Res::__rem / __c1;
00237 
00238     private:
00239       typedef __big_mul<__quot_lo, __d> _P0;
00240       typedef __big_mul<__quot_hi, __d> _P1;
00241       typedef __big_add<_P0::__hi, _P0::__lo, _P1::__lo, __rem> _Sum;
00242       // No overflow.
00243       static_assert(_P1::__hi == 0, "Internal library error");
00244       static_assert(_Sum::__hi >= _P0::__hi, "Internal library error");
00245       // Matches the input data.
00246       static_assert(_Sum::__hi == __n1 && _Sum::__lo == __n0,
00247             "Internal library error");
00248       static_assert(__rem < __d, "Internal library error");
00249     };
00250 
00251   /**
00252    *  @brief Provides compile-time rational arithmetic.
00253    *
00254    *  This class template represents any finite rational number with a
00255    *  numerator and denominator representable by compile-time constants of
00256    *  type intmax_t. The ratio is simplified when instantiated.
00257    *
00258    *  For example:
00259    *  @code
00260    *    std::ratio<7,-21>::num == -1;
00261    *    std::ratio<7,-21>::den == 3;
00262    *  @endcode
00263    *  
00264   */
00265   template<intmax_t _Num, intmax_t _Den = 1>
00266     struct ratio
00267     {
00268       static_assert(_Den != 0, "denominator cannot be zero");
00269       static_assert(_Num >= -__INTMAX_MAX__ && _Den >= -__INTMAX_MAX__,
00270             "out of range");
00271 
00272       // Note: sign(N) * abs(N) == N
00273       static constexpr intmax_t num =
00274         _Num * __static_sign<_Den>::value / __static_gcd<_Num, _Den>::value;
00275 
00276       static constexpr intmax_t den =
00277         __static_abs<_Den>::value / __static_gcd<_Num, _Den>::value;
00278 
00279       typedef ratio<num, den> type;
00280     };
00281 
00282   template<intmax_t _Num, intmax_t _Den>
00283     constexpr intmax_t ratio<_Num, _Den>::num;
00284 
00285   template<intmax_t _Num, intmax_t _Den>
00286     constexpr intmax_t ratio<_Num, _Den>::den;
00287 
00288   /// ratio_multiply
00289   template<typename _R1, typename _R2>
00290     struct ratio_multiply
00291     {
00292     private:
00293       static const intmax_t __gcd1 =
00294         __static_gcd<_R1::num, _R2::den>::value;
00295       static const intmax_t __gcd2 =
00296         __static_gcd<_R2::num, _R1::den>::value;
00297 
00298     public:
00299       typedef ratio<
00300         __safe_multiply<(_R1::num / __gcd1),
00301                         (_R2::num / __gcd2)>::value,
00302         __safe_multiply<(_R1::den / __gcd2),
00303                         (_R2::den / __gcd1)>::value> type;
00304 
00305       static constexpr intmax_t num = type::num;
00306       static constexpr intmax_t den = type::den;
00307     };
00308 
00309   template<typename _R1, typename _R2>
00310     constexpr intmax_t ratio_multiply<_R1, _R2>::num;
00311 
00312   template<typename _R1, typename _R2>
00313     constexpr intmax_t ratio_multiply<_R1, _R2>::den;
00314 
00315   /// ratio_divide
00316   template<typename _R1, typename _R2>
00317     struct ratio_divide
00318     {
00319       static_assert(_R2::num != 0, "division by 0");
00320 
00321       typedef typename ratio_multiply<
00322         _R1,
00323         ratio<_R2::den, _R2::num>>::type type;
00324 
00325       static constexpr intmax_t num = type::num;
00326       static constexpr intmax_t den = type::den;
00327     };
00328 
00329   template<typename _R1, typename _R2>
00330     constexpr intmax_t ratio_divide<_R1, _R2>::num;
00331 
00332   template<typename _R1, typename _R2>
00333     constexpr intmax_t ratio_divide<_R1, _R2>::den;
00334 
00335   /// ratio_equal
00336   template<typename _R1, typename _R2>
00337     struct ratio_equal
00338     : integral_constant<bool, _R1::num == _R2::num && _R1::den == _R2::den>
00339     { };
00340   
00341   /// ratio_not_equal
00342   template<typename _R1, typename _R2>
00343     struct ratio_not_equal
00344     : integral_constant<bool, !ratio_equal<_R1, _R2>::value>
00345     { };
00346 
00347   // Both numbers are positive.
00348   template<typename _R1, typename _R2,
00349            typename _Left = __big_mul<_R1::num,_R2::den>,
00350            typename _Right = __big_mul<_R2::num,_R1::den> >
00351     struct __ratio_less_impl_1
00352     : integral_constant<bool, __big_less<_Left::__hi, _Left::__lo,
00353            _Right::__hi, _Right::__lo>::value>
00354     { }; 
00355 
00356   template<typename _R1, typename _R2,
00357        bool = (_R1::num == 0 || _R2::num == 0
00358            || (__static_sign<_R1::num>::value
00359                != __static_sign<_R2::num>::value)),
00360        bool = (__static_sign<_R1::num>::value == -1
00361            && __static_sign<_R2::num>::value == -1)>
00362     struct __ratio_less_impl
00363     : __ratio_less_impl_1<_R1, _R2>::type
00364     { };
00365 
00366   template<typename _R1, typename _R2>
00367     struct __ratio_less_impl<_R1, _R2, true, false>
00368     : integral_constant<bool, _R1::num < _R2::num>
00369     { };
00370 
00371   template<typename _R1, typename _R2>
00372     struct __ratio_less_impl<_R1, _R2, false, true>
00373     : __ratio_less_impl_1<ratio<-_R2::num, _R2::den>,
00374            ratio<-_R1::num, _R1::den> >::type
00375     { };
00376 
00377   /// ratio_less
00378   template<typename _R1, typename _R2>
00379     struct ratio_less
00380     : __ratio_less_impl<_R1, _R2>::type
00381     { };
00382     
00383   /// ratio_less_equal
00384   template<typename _R1, typename _R2>
00385     struct ratio_less_equal
00386     : integral_constant<bool, !ratio_less<_R2, _R1>::value>
00387     { };
00388   
00389   /// ratio_greater
00390   template<typename _R1, typename _R2>
00391     struct ratio_greater
00392     : integral_constant<bool, ratio_less<_R2, _R1>::value>
00393     { };
00394 
00395   /// ratio_greater_equal
00396   template<typename _R1, typename _R2>
00397     struct ratio_greater_equal
00398     : integral_constant<bool, !ratio_less<_R1, _R2>::value>
00399     { };
00400 
00401   template<typename _R1, typename _R2,
00402       bool = (_R1::num >= 0),
00403       bool = (_R2::num >= 0),
00404       bool = ratio_less<ratio<__static_abs<_R1::num>::value, _R1::den>,
00405         ratio<__static_abs<_R2::num>::value, _R2::den> >::value>
00406     struct __ratio_add_impl
00407     {
00408     private:
00409       typedef typename __ratio_add_impl<
00410         ratio<-_R1::num, _R1::den>,
00411         ratio<-_R2::num, _R2::den> >::type __t;
00412     public:
00413       typedef ratio<-__t::num, __t::den> type;
00414     };
00415 
00416   // True addition of nonnegative numbers.
00417   template<typename _R1, typename _R2, bool __b>
00418     struct __ratio_add_impl<_R1, _R2, true, true, __b>
00419     {
00420     private:
00421       static constexpr uintmax_t __g = __static_gcd<_R1::den, _R2::den>::value;
00422       static constexpr uintmax_t __d2 = _R2::den / __g;
00423       typedef __big_mul<_R1::den, __d2> __d;
00424       typedef __big_mul<_R1::num, _R2::den / __g> __x;
00425       typedef __big_mul<_R2::num, _R1::den / __g> __y;
00426       typedef __big_add<__x::__hi, __x::__lo, __y::__hi, __y::__lo> __n;
00427       static_assert(__n::__hi >= __x::__hi, "Internal library error");
00428       typedef __big_div<__n::__hi, __n::__lo, __g> __ng;
00429       static constexpr uintmax_t __g2 = __static_gcd<__ng::__rem, __g>::value;
00430       typedef __big_div<__n::__hi, __n::__lo, __g2> __n_final;
00431       static_assert(__n_final::__rem == 0, "Internal library error");
00432       static_assert(__n_final::__quot_hi == 0 &&
00433         __n_final::__quot_lo <= __INTMAX_MAX__, "overflow in addition");
00434       typedef __big_mul<_R1::den / __g2, __d2> __d_final;
00435       static_assert(__d_final::__hi == 0 &&
00436         __d_final::__lo <= __INTMAX_MAX__, "overflow in addition");
00437     public:
00438       typedef ratio<__n_final::__quot_lo, __d_final::__lo> type;
00439     };
00440 
00441   template<typename _R1, typename _R2>
00442     struct __ratio_add_impl<_R1, _R2, false, true, true>
00443     : __ratio_add_impl<_R2, _R1>
00444     { };
00445 
00446   // True subtraction of nonnegative numbers yielding a nonnegative result.
00447   template<typename _R1, typename _R2>
00448     struct __ratio_add_impl<_R1, _R2, true, false, false>
00449     {
00450     private:
00451       static constexpr uintmax_t __g = __static_gcd<_R1::den, _R2::den>::value;
00452       static constexpr uintmax_t __d2 = _R2::den / __g;
00453       typedef __big_mul<_R1::den, __d2> __d;
00454       typedef __big_mul<_R1::num, _R2::den / __g> __x;
00455       typedef __big_mul<-_R2::num, _R1::den / __g> __y;
00456       typedef __big_sub<__x::__hi, __x::__lo, __y::__hi, __y::__lo> __n;
00457       typedef __big_div<__n::__hi, __n::__lo, __g> __ng;
00458       static constexpr uintmax_t __g2 = __static_gcd<__ng::__rem, __g>::value;
00459       typedef __big_div<__n::__hi, __n::__lo, __g2> __n_final;
00460       static_assert(__n_final::__rem == 0, "Internal library error");
00461       static_assert(__n_final::__quot_hi == 0 &&
00462         __n_final::__quot_lo <= __INTMAX_MAX__, "overflow in addition");
00463       typedef __big_mul<_R1::den / __g2, __d2> __d_final;
00464       static_assert(__d_final::__hi == 0 &&
00465         __d_final::__lo <= __INTMAX_MAX__, "overflow in addition");
00466     public:
00467       typedef ratio<__n_final::__quot_lo, __d_final::__lo> type;
00468     };
00469 
00470   /// ratio_add
00471   template<typename _R1, typename _R2>
00472     struct ratio_add
00473     {
00474       typedef typename __ratio_add_impl<_R1, _R2>::type type;
00475       static constexpr intmax_t num = type::num;
00476       static constexpr intmax_t den = type::den;
00477     };
00478 
00479   template<typename _R1, typename _R2>
00480     constexpr intmax_t ratio_add<_R1, _R2>::num;
00481 
00482   template<typename _R1, typename _R2>
00483     constexpr intmax_t ratio_add<_R1, _R2>::den;
00484 
00485   /// ratio_subtract
00486   template<typename _R1, typename _R2>
00487     struct ratio_subtract
00488     {
00489       typedef typename ratio_add<
00490         _R1,
00491         ratio<-_R2::num, _R2::den>>::type type;
00492 
00493       static constexpr intmax_t num = type::num;
00494       static constexpr intmax_t den = type::den;
00495     };
00496 
00497   template<typename _R1, typename _R2>
00498     constexpr intmax_t ratio_subtract<_R1, _R2>::num;
00499 
00500   template<typename _R1, typename _R2>
00501     constexpr intmax_t ratio_subtract<_R1, _R2>::den;
00502 
00503 
00504 
00505   typedef ratio<1,       1000000000000000000> atto;
00506   typedef ratio<1,          1000000000000000> femto;
00507   typedef ratio<1,             1000000000000> pico;
00508   typedef ratio<1,                1000000000> nano;
00509   typedef ratio<1,                   1000000> micro;
00510   typedef ratio<1,                      1000> milli;
00511   typedef ratio<1,                       100> centi;
00512   typedef ratio<1,                        10> deci;
00513   typedef ratio<                       10, 1> deca;
00514   typedef ratio<                      100, 1> hecto;
00515   typedef ratio<                     1000, 1> kilo;
00516   typedef ratio<                  1000000, 1> mega;
00517   typedef ratio<               1000000000, 1> giga;
00518   typedef ratio<            1000000000000, 1> tera;
00519   typedef ratio<         1000000000000000, 1> peta;
00520   typedef ratio<      1000000000000000000, 1> exa;
00521 
00522   // @} group ratio
00523 _GLIBCXX_END_NAMESPACE_VERSION
00524 } // namespace
00525 
00526 #endif //_GLIBCXX_USE_C99_STDINT_TR1
00527 
00528 #endif //__GXX_EXPERIMENTAL_CXX0X__
00529 
00530 #endif //_GLIBCXX_RATIO