libstdc++
hashtable_policy.h
Go to the documentation of this file.
00001 // Internal policy header for unordered_set and unordered_map -*- C++ -*-
00002 
00003 // Copyright (C) 2010, 2011, 2012 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 3, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // Under Section 7 of GPL version 3, you are granted additional
00017 // permissions described in the GCC Runtime Library Exception, version
00018 // 3.1, as published by the Free Software Foundation.
00019 
00020 // You should have received a copy of the GNU General Public License and
00021 // a copy of the GCC Runtime Library Exception along with this program;
00022 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
00023 // <http://www.gnu.org/licenses/>.
00024 
00025 /** @file bits/hashtable_policy.h
00026  *  This is an internal header file, included by other library headers.
00027  *  Do not attempt to use it directly.
00028  *  @headername{unordered_map,unordered_set}
00029  */
00030 
00031 #ifndef _HASHTABLE_POLICY_H
00032 #define _HASHTABLE_POLICY_H 1
00033 
00034 namespace std _GLIBCXX_VISIBILITY(default)
00035 {
00036 namespace __detail
00037 {
00038 _GLIBCXX_BEGIN_NAMESPACE_VERSION
00039 
00040   // Helper function: return distance(first, last) for forward
00041   // iterators, or 0 for input iterators.
00042   template<class _Iterator>
00043     inline typename std::iterator_traits<_Iterator>::difference_type
00044     __distance_fw(_Iterator __first, _Iterator __last,
00045           std::input_iterator_tag)
00046     { return 0; }
00047 
00048   template<class _Iterator>
00049     inline typename std::iterator_traits<_Iterator>::difference_type
00050     __distance_fw(_Iterator __first, _Iterator __last,
00051           std::forward_iterator_tag)
00052     { return std::distance(__first, __last); }
00053 
00054   template<class _Iterator>
00055     inline typename std::iterator_traits<_Iterator>::difference_type
00056     __distance_fw(_Iterator __first, _Iterator __last)
00057     {
00058       typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
00059       return __distance_fw(__first, __last, _Tag());
00060     }
00061 
00062   // Helper type used to detect when the hash functor is noexcept qualified or
00063   // not
00064   template <typename _Key, typename _Hash>
00065     struct __is_noexcept_hash : std::integral_constant<bool,
00066     noexcept(declval<const _Hash&>()(declval<const _Key&>()))>
00067     {};
00068 
00069   // Auxiliary types used for all instantiations of _Hashtable: nodes
00070   // and iterators.
00071 
00072   // Nodes, used to wrap elements stored in the hash table.  A policy
00073   // template parameter of class template _Hashtable controls whether
00074   // nodes also store a hash code. In some cases (e.g. strings) this
00075   // may be a performance win.
00076   struct _Hash_node_base
00077   {
00078     _Hash_node_base* _M_nxt;
00079 
00080     _Hash_node_base()
00081       : _M_nxt() { }
00082     _Hash_node_base(_Hash_node_base* __next)
00083       : _M_nxt(__next) { }
00084   };
00085 
00086   template<typename _Value, bool __cache_hash_code>
00087     struct _Hash_node;
00088 
00089   template<typename _Value>
00090     struct _Hash_node<_Value, true> : _Hash_node_base
00091     {
00092       _Value       _M_v;
00093       std::size_t  _M_hash_code;
00094 
00095       template<typename... _Args>
00096     _Hash_node(_Args&&... __args)
00097     : _M_v(std::forward<_Args>(__args)...), _M_hash_code() { }
00098 
00099       _Hash_node* _M_next() const
00100       { return static_cast<_Hash_node*>(_M_nxt); }
00101     };
00102 
00103   template<typename _Value>
00104     struct _Hash_node<_Value, false> : _Hash_node_base
00105     {
00106       _Value       _M_v;
00107 
00108       template<typename... _Args>
00109     _Hash_node(_Args&&... __args)
00110     : _M_v(std::forward<_Args>(__args)...) { }
00111 
00112       _Hash_node* _M_next() const
00113       { return static_cast<_Hash_node*>(_M_nxt); }
00114     };
00115 
00116   // Node iterators, used to iterate through all the hashtable.
00117   template<typename _Value, bool __cache>
00118     struct _Node_iterator_base
00119     {
00120       _Node_iterator_base(_Hash_node<_Value, __cache>* __p)
00121       : _M_cur(__p) { }
00122 
00123       void
00124       _M_incr()
00125       { _M_cur = _M_cur->_M_next(); }
00126 
00127       _Hash_node<_Value, __cache>*  _M_cur;
00128     };
00129 
00130   template<typename _Value, bool __cache>
00131     inline bool
00132     operator==(const _Node_iterator_base<_Value, __cache>& __x,
00133            const _Node_iterator_base<_Value, __cache>& __y)
00134     { return __x._M_cur == __y._M_cur; }
00135 
00136   template<typename _Value, bool __cache>
00137     inline bool
00138     operator!=(const _Node_iterator_base<_Value, __cache>& __x,
00139            const _Node_iterator_base<_Value, __cache>& __y)
00140     { return __x._M_cur != __y._M_cur; }
00141 
00142   template<typename _Value, bool __constant_iterators, bool __cache>
00143     struct _Node_iterator
00144     : public _Node_iterator_base<_Value, __cache>
00145     {
00146       typedef _Value                                   value_type;
00147       typedef typename std::conditional<__constant_iterators,
00148                     const _Value*, _Value*>::type
00149                                pointer;
00150       typedef typename std::conditional<__constant_iterators,
00151                     const _Value&, _Value&>::type
00152                                reference;
00153       typedef std::ptrdiff_t                           difference_type;
00154       typedef std::forward_iterator_tag                iterator_category;
00155 
00156       _Node_iterator()
00157       : _Node_iterator_base<_Value, __cache>(0) { }
00158 
00159       explicit
00160       _Node_iterator(_Hash_node<_Value, __cache>* __p)
00161       : _Node_iterator_base<_Value, __cache>(__p) { }
00162 
00163       reference
00164       operator*() const
00165       { return this->_M_cur->_M_v; }
00166 
00167       pointer
00168       operator->() const
00169       { return std::__addressof(this->_M_cur->_M_v); }
00170 
00171       _Node_iterator&
00172       operator++()
00173       {
00174     this->_M_incr();
00175     return *this;
00176       }
00177 
00178       _Node_iterator
00179       operator++(int)
00180       {
00181     _Node_iterator __tmp(*this);
00182     this->_M_incr();
00183     return __tmp;
00184       }
00185     };
00186 
00187   template<typename _Value, bool __constant_iterators, bool __cache>
00188     struct _Node_const_iterator
00189     : public _Node_iterator_base<_Value, __cache>
00190     {
00191       typedef _Value                                   value_type;
00192       typedef const _Value*                            pointer;
00193       typedef const _Value&                            reference;
00194       typedef std::ptrdiff_t                           difference_type;
00195       typedef std::forward_iterator_tag                iterator_category;
00196 
00197       _Node_const_iterator()
00198       : _Node_iterator_base<_Value, __cache>(0) { }
00199 
00200       explicit
00201       _Node_const_iterator(_Hash_node<_Value, __cache>* __p)
00202       : _Node_iterator_base<_Value, __cache>(__p) { }
00203 
00204       _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
00205                __cache>& __x)
00206       : _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
00207 
00208       reference
00209       operator*() const
00210       { return this->_M_cur->_M_v; }
00211 
00212       pointer
00213       operator->() const
00214       { return std::__addressof(this->_M_cur->_M_v); }
00215 
00216       _Node_const_iterator&
00217       operator++()
00218       {
00219     this->_M_incr();
00220     return *this;
00221       }
00222 
00223       _Node_const_iterator
00224       operator++(int)
00225       {
00226     _Node_const_iterator __tmp(*this);
00227     this->_M_incr();
00228     return __tmp;
00229       }
00230     };
00231 
00232   // Many of class template _Hashtable's template parameters are policy
00233   // classes.  These are defaults for the policies.
00234 
00235   // Default range hashing function: use division to fold a large number
00236   // into the range [0, N).
00237   struct _Mod_range_hashing
00238   {
00239     typedef std::size_t first_argument_type;
00240     typedef std::size_t second_argument_type;
00241     typedef std::size_t result_type;
00242 
00243     result_type
00244     operator()(first_argument_type __num, second_argument_type __den) const
00245     { return __num % __den; }
00246   };
00247 
00248   // Default ranged hash function H.  In principle it should be a
00249   // function object composed from objects of type H1 and H2 such that
00250   // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
00251   // h1 and h2.  So instead we'll just use a tag to tell class template
00252   // hashtable to do that composition.
00253   struct _Default_ranged_hash { };
00254 
00255   // Default value for rehash policy.  Bucket size is (usually) the
00256   // smallest prime that keeps the load factor small enough.
00257   struct _Prime_rehash_policy
00258   {
00259     _Prime_rehash_policy(float __z = 1.0)
00260     : _M_max_load_factor(__z), _M_prev_resize(0), _M_next_resize(0) { }
00261 
00262     float
00263     max_load_factor() const noexcept
00264     { return _M_max_load_factor; }
00265 
00266     // Return a bucket size no smaller than n.
00267     std::size_t
00268     _M_next_bkt(std::size_t __n) const;
00269 
00270     // Return a bucket count appropriate for n elements
00271     std::size_t
00272     _M_bkt_for_elements(std::size_t __n) const;
00273 
00274     // __n_bkt is current bucket count, __n_elt is current element count,
00275     // and __n_ins is number of elements to be inserted.  Do we need to
00276     // increase bucket count?  If so, return make_pair(true, n), where n
00277     // is the new bucket count.  If not, return make_pair(false, 0).
00278     std::pair<bool, std::size_t>
00279     _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
00280            std::size_t __n_ins) const;
00281 
00282     typedef std::pair<std::size_t, std::size_t> _State;
00283 
00284     _State
00285     _M_state() const
00286     { return std::make_pair(_M_prev_resize, _M_next_resize); }
00287 
00288     void
00289     _M_reset(const _State& __state)
00290     {
00291       _M_prev_resize = __state.first;
00292       _M_next_resize = __state.second;
00293     }
00294 
00295     enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
00296 
00297     float                _M_max_load_factor;
00298     mutable std::size_t  _M_prev_resize;
00299     mutable std::size_t  _M_next_resize;
00300   };
00301 
00302   extern const unsigned long __prime_list[];
00303 
00304   // XXX This is a hack.  There's no good reason for any of
00305   // _Prime_rehash_policy's member functions to be inline.
00306 
00307   // Return a prime no smaller than n.
00308   inline std::size_t
00309   _Prime_rehash_policy::
00310   _M_next_bkt(std::size_t __n) const
00311   {
00312     // Optimize lookups involving the first elements of __prime_list.
00313     // (useful to speed-up, eg, constructors)
00314     static const unsigned char __fast_bkt[12]
00315       = { 2, 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11 };
00316 
00317     if (__n <= 11)
00318       {
00319     _M_prev_resize = 0;
00320     _M_next_resize
00321       = __builtin_ceil(__fast_bkt[__n] * (long double)_M_max_load_factor);
00322     return __fast_bkt[__n];
00323       }
00324 
00325     const unsigned long* __p
00326       = std::lower_bound(__prime_list + 5, __prime_list + _S_n_primes, __n);
00327 
00328     // Shrink will take place only if the number of elements is small enough
00329     // so that the prime number 2 steps before __p is large enough to still
00330     // conform to the max load factor:
00331     _M_prev_resize
00332       = __builtin_floor(*(__p - 2) * (long double)_M_max_load_factor);
00333 
00334     // Let's guaranty that a minimal grow step of 11 is used
00335     if (*__p - __n < 11)
00336       __p = std::lower_bound(__p, __prime_list + _S_n_primes, __n + 11);
00337     _M_next_resize = __builtin_ceil(*__p * (long double)_M_max_load_factor);
00338     return *__p;
00339   }
00340 
00341   // Return the smallest prime p such that alpha p >= n, where alpha
00342   // is the load factor.
00343   inline std::size_t
00344   _Prime_rehash_policy::
00345   _M_bkt_for_elements(std::size_t __n) const
00346   { return _M_next_bkt(__builtin_ceil(__n / (long double)_M_max_load_factor)); }
00347 
00348   // Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
00349   // If p > __n_bkt, return make_pair(true, p); otherwise return
00350   // make_pair(false, 0).  In principle this isn't very different from
00351   // _M_bkt_for_elements.
00352 
00353   // The only tricky part is that we're caching the element count at
00354   // which we need to rehash, so we don't have to do a floating-point
00355   // multiply for every insertion.
00356 
00357   inline std::pair<bool, std::size_t>
00358   _Prime_rehash_policy::
00359   _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
00360          std::size_t __n_ins) const
00361   {
00362     if (__n_elt + __n_ins >= _M_next_resize)
00363       {
00364     long double __min_bkts = (__n_elt + __n_ins)
00365                  / (long double)_M_max_load_factor;
00366     if (__min_bkts >= __n_bkt)
00367       return std::make_pair(true,
00368                 _M_next_bkt(__builtin_floor(__min_bkts) + 1));
00369     else
00370       {
00371         _M_next_resize
00372           = __builtin_floor(__n_bkt * (long double)_M_max_load_factor);
00373         return std::make_pair(false, 0);
00374       }
00375       }
00376     else if (__n_elt + __n_ins < _M_prev_resize)
00377       {
00378     long double __min_bkts = (__n_elt + __n_ins)
00379                  / (long double)_M_max_load_factor;
00380     return std::make_pair(true,
00381                   _M_next_bkt(__builtin_floor(__min_bkts) + 1));
00382       }
00383     else
00384       return std::make_pair(false, 0);
00385   }
00386 
00387   // Base classes for std::_Hashtable.  We define these base classes
00388   // because in some cases we want to do different things depending
00389   // on the value of a policy class.  In some cases the policy class
00390   // affects which member functions and nested typedefs are defined;
00391   // we handle that by specializing base class templates.  Several of
00392   // the base class templates need to access other members of class
00393   // template _Hashtable, so we use the "curiously recurring template
00394   // pattern" for them.
00395 
00396   // class template _Map_base.  If the hashtable has a value type of
00397   // the form pair<T1, T2> and a key extraction policy that returns the
00398   // first part of the pair, the hashtable gets a mapped_type typedef.
00399   // If it satisfies those criteria and also has unique keys, then it
00400   // also gets an operator[].
00401   template<typename _Key, typename _Value, typename _Ex, bool __unique,
00402        typename _Hashtable>
00403     struct _Map_base { };
00404 
00405   template<typename _Key, typename _Pair, typename _Hashtable>
00406     struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
00407     {
00408       typedef typename _Pair::second_type mapped_type;
00409     };
00410 
00411   template<typename _Key, typename _Pair, typename _Hashtable>
00412     struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
00413     {
00414       typedef typename _Pair::second_type mapped_type;
00415 
00416       mapped_type&
00417       operator[](const _Key& __k);
00418 
00419       mapped_type&
00420       operator[](_Key&& __k);
00421 
00422       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00423       // DR 761. unordered_map needs an at() member function.
00424       mapped_type&
00425       at(const _Key& __k);
00426 
00427       const mapped_type&
00428       at(const _Key& __k) const;
00429     };
00430 
00431   template<typename _Key, typename _Pair, typename _Hashtable>
00432     typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
00433                true, _Hashtable>::mapped_type&
00434     _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
00435     operator[](const _Key& __k)
00436     {
00437       _Hashtable* __h = static_cast<_Hashtable*>(this);
00438       typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
00439       std::size_t __n = __h->_M_bucket_index(__k, __code);
00440 
00441       typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code);
00442       if (!__p)
00443     return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
00444                      __n, __code)->second;
00445       return (__p->_M_v).second;
00446     }
00447 
00448   template<typename _Key, typename _Pair, typename _Hashtable>
00449     typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
00450                true, _Hashtable>::mapped_type&
00451     _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
00452     operator[](_Key&& __k)
00453     {
00454       _Hashtable* __h = static_cast<_Hashtable*>(this);
00455       typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
00456       std::size_t __n = __h->_M_bucket_index(__k, __code);
00457 
00458       typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code);
00459       if (!__p)
00460     return __h->_M_insert_bucket(std::make_pair(std::move(__k),
00461                             mapped_type()),
00462                      __n, __code)->second;
00463       return (__p->_M_v).second;
00464     }
00465 
00466   template<typename _Key, typename _Pair, typename _Hashtable>
00467     typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
00468                true, _Hashtable>::mapped_type&
00469     _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
00470     at(const _Key& __k)
00471     {
00472       _Hashtable* __h = static_cast<_Hashtable*>(this);
00473       typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
00474       std::size_t __n = __h->_M_bucket_index(__k, __code);
00475 
00476       typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code);
00477       if (!__p)
00478     __throw_out_of_range(__N("_Map_base::at"));
00479       return (__p->_M_v).second;
00480     }
00481 
00482   template<typename _Key, typename _Pair, typename _Hashtable>
00483     const typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
00484                  true, _Hashtable>::mapped_type&
00485     _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
00486     at(const _Key& __k) const
00487     {
00488       const _Hashtable* __h = static_cast<const _Hashtable*>(this);
00489       typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
00490       std::size_t __n = __h->_M_bucket_index(__k, __code);
00491 
00492       typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code);
00493       if (!__p)
00494     __throw_out_of_range(__N("_Map_base::at"));
00495       return (__p->_M_v).second;
00496     }
00497 
00498   // class template _Rehash_base.  Give hashtable the max_load_factor
00499   // functions and reserve iff the rehash policy is _Prime_rehash_policy.
00500   template<typename _RehashPolicy, typename _Hashtable>
00501     struct _Rehash_base { };
00502 
00503   template<typename _Hashtable>
00504     struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
00505     {
00506       float
00507       max_load_factor() const noexcept
00508       {
00509     const _Hashtable* __this = static_cast<const _Hashtable*>(this);
00510     return __this->__rehash_policy().max_load_factor();
00511       }
00512 
00513       void
00514       max_load_factor(float __z)
00515       {
00516     _Hashtable* __this = static_cast<_Hashtable*>(this);
00517     __this->__rehash_policy(_Prime_rehash_policy(__z));
00518       }
00519 
00520       void
00521       reserve(std::size_t __n)
00522       {
00523     _Hashtable* __this = static_cast<_Hashtable*>(this);
00524     __this->rehash(__builtin_ceil(__n / max_load_factor()));
00525       }
00526     };
00527 
00528   // Helper class using EBO when it is not forbidden, type is not final,
00529   // and when it worth it, type is empty.
00530   template<int _Nm, typename _Tp,
00531        bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
00532     struct _Hashtable_ebo_helper;
00533 
00534   // Specialization using EBO.
00535   template<int _Nm, typename _Tp>
00536     struct _Hashtable_ebo_helper<_Nm, _Tp, true> : private _Tp
00537     {
00538       _Hashtable_ebo_helper() = default;
00539       _Hashtable_ebo_helper(const _Tp& __tp) : _Tp(__tp)
00540       { }
00541 
00542       static const _Tp&
00543       _S_cget(const _Hashtable_ebo_helper& __eboh)
00544       { return static_cast<const _Tp&>(__eboh); }
00545 
00546       static _Tp&
00547       _S_get(_Hashtable_ebo_helper& __eboh)
00548       { return static_cast<_Tp&>(__eboh); }
00549     };
00550 
00551   // Specialization not using EBO.
00552   template<int _Nm, typename _Tp>
00553     struct _Hashtable_ebo_helper<_Nm, _Tp, false>
00554     {
00555       _Hashtable_ebo_helper() = default;
00556       _Hashtable_ebo_helper(const _Tp& __tp) : _M_tp(__tp)
00557       { }
00558 
00559       static const _Tp&
00560       _S_cget(const _Hashtable_ebo_helper& __eboh)
00561       { return __eboh._M_tp; }
00562 
00563       static _Tp&
00564       _S_get(_Hashtable_ebo_helper& __eboh)
00565       { return __eboh._M_tp; }
00566 
00567     private:
00568       _Tp _M_tp;
00569     };
00570 
00571   // Class template _Hash_code_base.  Encapsulates two policy issues that
00572   // aren't quite orthogonal.
00573   //   (1) the difference between using a ranged hash function and using
00574   //       the combination of a hash function and a range-hashing function.
00575   //       In the former case we don't have such things as hash codes, so
00576   //       we have a dummy type as placeholder.
00577   //   (2) Whether or not we cache hash codes.  Caching hash codes is
00578   //       meaningless if we have a ranged hash function.
00579   // We also put the key extraction objects here, for convenience.
00580   //
00581   // Each specialization derives from one or more of the template parameters to
00582   // benefit from Ebo. This is important as this type is inherited in some cases
00583   // by the _Local_iterator_base type used to implement local_iterator and
00584   // const_local_iterator. As with any iterator type we prefer to make it as
00585   // small as possible.
00586 
00587   // Primary template: unused except as a hook for specializations.
00588   template<typename _Key, typename _Value, typename _ExtractKey,
00589        typename _H1, typename _H2, typename _Hash,
00590        bool __cache_hash_code>
00591     struct _Hash_code_base;
00592 
00593   // Specialization: ranged hash function, no caching hash codes.  H1
00594   // and H2 are provided but ignored.  We define a dummy hash code type.
00595   template<typename _Key, typename _Value, typename _ExtractKey, 
00596        typename _H1, typename _H2, typename _Hash>
00597     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
00598     : private _Hashtable_ebo_helper<0, _ExtractKey>,
00599       private _Hashtable_ebo_helper<1, _Hash>
00600     {
00601     private:
00602       typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey;
00603       typedef _Hashtable_ebo_helper<1, _Hash> _EboHash;
00604 
00605     protected:
00606       // We need the default constructor for the local iterators.
00607       _Hash_code_base() = default;
00608       _Hash_code_base(const _ExtractKey& __ex,
00609               const _H1&, const _H2&, const _Hash& __h)
00610     : _EboExtractKey(__ex), _EboHash(__h) { }
00611 
00612       typedef void* _Hash_code_type;
00613 
00614       _Hash_code_type
00615       _M_hash_code(const _Key& __key) const
00616       { return 0; }
00617 
00618       std::size_t
00619       _M_bucket_index(const _Key& __k, _Hash_code_type,
00620               std::size_t __n) const
00621       { return _M_ranged_hash()(__k, __n); }
00622 
00623       std::size_t
00624       _M_bucket_index(const _Hash_node<_Value, false>* __p,
00625               std::size_t __n) const
00626       { return _M_ranged_hash()(_M_extract()(__p->_M_v), __n); }
00627 
00628       void
00629       _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
00630       { }
00631 
00632       void
00633       _M_copy_code(_Hash_node<_Value, false>*,
00634            const _Hash_node<_Value, false>*) const
00635       { }
00636 
00637       void
00638       _M_swap(_Hash_code_base& __x)
00639       {
00640     std::swap(_M_extract(), __x._M_extract());
00641     std::swap(_M_ranged_hash(), __x._M_ranged_hash());
00642       }
00643 
00644     protected:
00645       const _ExtractKey&
00646       _M_extract() const { return _EboExtractKey::_S_cget(*this); }
00647       _ExtractKey&
00648       _M_extract() { return _EboExtractKey::_S_get(*this); }
00649       const _Hash&
00650       _M_ranged_hash() const { return _EboHash::_S_cget(*this); }
00651       _Hash&
00652       _M_ranged_hash() { return _EboHash::_S_get(*this); }
00653     };
00654 
00655   // No specialization for ranged hash function while caching hash codes.
00656   // That combination is meaningless, and trying to do it is an error.
00657 
00658   // Specialization: ranged hash function, cache hash codes.  This
00659   // combination is meaningless, so we provide only a declaration
00660   // and no definition.
00661   template<typename _Key, typename _Value, typename _ExtractKey,
00662        typename _H1, typename _H2, typename _Hash>
00663     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
00664 
00665   // Specialization: hash function and range-hashing function, no
00666   // caching of hash codes.
00667   // Provides typedef and accessor required by TR1.
00668   template<typename _Key, typename _Value, typename _ExtractKey,
00669        typename _H1, typename _H2>
00670     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
00671                _Default_ranged_hash, false>
00672     : private _Hashtable_ebo_helper<0, _ExtractKey>,
00673       private _Hashtable_ebo_helper<1, _H1>,
00674       private _Hashtable_ebo_helper<2, _H2>
00675     {
00676     private:
00677       typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey;
00678       typedef _Hashtable_ebo_helper<1, _H1> _EboH1;
00679       typedef _Hashtable_ebo_helper<2, _H2> _EboH2;
00680 
00681     public:
00682       typedef _H1 hasher;
00683 
00684       hasher
00685       hash_function() const
00686       { return _M_h1(); }
00687 
00688     protected:
00689       // We need the default constructor for the local iterators.
00690       _Hash_code_base() = default;
00691       _Hash_code_base(const _ExtractKey& __ex,
00692               const _H1& __h1, const _H2& __h2,
00693               const _Default_ranged_hash&)
00694       : _EboExtractKey(__ex), _EboH1(__h1), _EboH2(__h2) { }
00695 
00696       typedef std::size_t _Hash_code_type;
00697 
00698       _Hash_code_type
00699       _M_hash_code(const _Key& __k) const
00700       { return _M_h1()(__k); }
00701 
00702       std::size_t
00703       _M_bucket_index(const _Key&, _Hash_code_type __c,
00704               std::size_t __n) const
00705       { return _M_h2()(__c, __n); }
00706 
00707       std::size_t
00708       _M_bucket_index(const _Hash_node<_Value, false>* __p,
00709               std::size_t __n) const
00710       { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v)), __n); }
00711 
00712       void
00713       _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
00714       { }
00715 
00716       void
00717       _M_copy_code(_Hash_node<_Value, false>*,
00718            const _Hash_node<_Value, false>*) const
00719       { }
00720 
00721       void
00722       _M_swap(_Hash_code_base& __x)
00723       {
00724     std::swap(_M_extract(), __x._M_extract());
00725     std::swap(_M_h1(), __x._M_h1());
00726     std::swap(_M_h2(), __x._M_h2());
00727       }
00728 
00729     protected:
00730       const _ExtractKey&
00731       _M_extract() const { return _EboExtractKey::_S_cget(*this); }
00732       _ExtractKey&
00733       _M_extract() { return _EboExtractKey::_S_get(*this); }
00734       const _H1&
00735       _M_h1() const { return _EboH1::_S_cget(*this); }
00736       _H1&
00737       _M_h1() { return _EboH1::_S_get(*this); }
00738       const _H2&
00739       _M_h2() const { return _EboH2::_S_cget(*this); }
00740       _H2&
00741       _M_h2() { return _EboH2::_S_get(*this); }
00742     };
00743 
00744   // Specialization: hash function and range-hashing function,
00745   // caching hash codes.  H is provided but ignored.  Provides
00746   // typedef and accessor required by TR1.
00747   template<typename _Key, typename _Value, typename _ExtractKey,
00748        typename _H1, typename _H2>
00749     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
00750                _Default_ranged_hash, true>
00751     : private _Hashtable_ebo_helper<0, _ExtractKey>,
00752       private _Hashtable_ebo_helper<1, _H1>,
00753       private _Hashtable_ebo_helper<2, _H2>
00754     {
00755     private:
00756       typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey;
00757       typedef _Hashtable_ebo_helper<1, _H1> _EboH1;
00758       typedef _Hashtable_ebo_helper<2, _H2> _EboH2;
00759 
00760     public:
00761       typedef _H1 hasher;
00762 
00763       hasher
00764       hash_function() const
00765       { return _M_h1(); }
00766 
00767     protected:
00768       _Hash_code_base(const _ExtractKey& __ex,
00769               const _H1& __h1, const _H2& __h2,
00770               const _Default_ranged_hash&)
00771       : _EboExtractKey(__ex), _EboH1(__h1), _EboH2(__h2) { }
00772 
00773       typedef std::size_t _Hash_code_type;
00774 
00775       _Hash_code_type
00776       _M_hash_code(const _Key& __k) const
00777       { return _M_h1()(__k); }
00778 
00779       std::size_t
00780       _M_bucket_index(const _Key&, _Hash_code_type __c,
00781               std::size_t __n) const
00782       { return _M_h2()(__c, __n); }
00783 
00784       std::size_t
00785       _M_bucket_index(const _Hash_node<_Value, true>* __p,
00786               std::size_t __n) const
00787       { return _M_h2()(__p->_M_hash_code, __n); }
00788 
00789       void
00790       _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
00791       { __n->_M_hash_code = __c; }
00792 
00793       void
00794       _M_copy_code(_Hash_node<_Value, true>* __to,
00795            const _Hash_node<_Value, true>* __from) const
00796       { __to->_M_hash_code = __from->_M_hash_code; }
00797 
00798       void
00799       _M_swap(_Hash_code_base& __x)
00800       {
00801     std::swap(_M_extract(), __x._M_extract());
00802     std::swap(_M_h1(), __x._M_h1());
00803     std::swap(_M_h2(), __x._M_h2());
00804       }
00805 
00806     protected:
00807       const _ExtractKey&
00808       _M_extract() const { return _EboExtractKey::_S_cget(*this); }
00809       _ExtractKey&
00810       _M_extract() { return _EboExtractKey::_S_get(*this); }
00811       const _H1&
00812       _M_h1() const { return _EboH1::_S_cget(*this); }
00813       _H1&
00814       _M_h1() { return _EboH1::_S_get(*this); }
00815       const _H2&
00816       _M_h2() const { return _EboH2::_S_cget(*this); }
00817       _H2&
00818       _M_h2() { return _EboH2::_S_get(*this); }
00819     };
00820 
00821   template <typename _Key, typename _Value, typename _ExtractKey,
00822         typename _Equal, typename _HashCodeType,
00823         bool __cache_hash_code>
00824   struct _Equal_helper;
00825 
00826   template<typename _Key, typename _Value, typename _ExtractKey,
00827        typename _Equal, typename _HashCodeType>
00828   struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
00829   {
00830     static bool
00831     _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
00832           const _Key& __k, _HashCodeType __c,
00833           _Hash_node<_Value, true>* __n)
00834     { return __c == __n->_M_hash_code
00835          && __eq(__k, __extract(__n->_M_v)); }
00836   };
00837 
00838   template<typename _Key, typename _Value, typename _ExtractKey,
00839        typename _Equal, typename _HashCodeType>
00840   struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
00841   {
00842     static bool
00843     _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
00844           const _Key& __k, _HashCodeType,
00845           _Hash_node<_Value, false>* __n)
00846     { return __eq(__k, __extract(__n->_M_v)); }
00847   };
00848 
00849   // Helper class adding management of _Equal functor to _Hash_code_base
00850   // type.
00851   template<typename _Key, typename _Value,
00852        typename _ExtractKey, typename _Equal,
00853        typename _H1, typename _H2, typename _Hash,
00854        bool __cache_hash_code>
00855   struct _Hashtable_base
00856   : public  _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
00857                 __cache_hash_code>,
00858     private _Hashtable_ebo_helper<0, _Equal>
00859   {
00860   private:
00861     typedef _Hashtable_ebo_helper<0, _Equal> _EboEqual;
00862 
00863   protected:
00864     typedef _Hash_code_base<_Key, _Value, _ExtractKey,
00865                 _H1, _H2, _Hash, __cache_hash_code> _HCBase;
00866     typedef typename _HCBase::_Hash_code_type _Hash_code_type;
00867 
00868     _Hashtable_base(const _ExtractKey& __ex,
00869             const _H1& __h1, const _H2& __h2,
00870             const _Hash& __hash, const _Equal& __eq)
00871       : _HCBase(__ex, __h1, __h2, __hash), _EboEqual(__eq) { }
00872 
00873     bool
00874     _M_equals(const _Key& __k, _Hash_code_type __c,
00875           _Hash_node<_Value, __cache_hash_code>* __n) const
00876     {
00877       typedef _Equal_helper<_Key, _Value, _ExtractKey,
00878                _Equal, _Hash_code_type,
00879                __cache_hash_code> _EqualHelper;
00880       return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
00881                      __k, __c, __n);
00882     }
00883 
00884     void
00885     _M_swap(_Hashtable_base& __x)
00886     {
00887       _HCBase::_M_swap(__x);
00888       std::swap(_M_eq(), __x._M_eq());
00889     }
00890 
00891   protected:
00892     const _Equal&
00893     _M_eq() const { return _EboEqual::_S_cget(*this); }
00894     _Equal&
00895     _M_eq() { return _EboEqual::_S_get(*this); }
00896   };
00897 
00898   // Local iterators, used to iterate within a bucket but not between
00899   // buckets.
00900   template<typename _Key, typename _Value, typename _ExtractKey,
00901        typename _H1, typename _H2, typename _Hash,
00902        bool __cache_hash_code>
00903     struct _Local_iterator_base;
00904 
00905   template<typename _Key, typename _Value, typename _ExtractKey,
00906        typename _H1, typename _H2, typename _Hash>
00907     struct _Local_iterator_base<_Key, _Value, _ExtractKey,
00908                 _H1, _H2, _Hash, true>
00909       : private _H2
00910     {
00911       _Local_iterator_base() = default;
00912       _Local_iterator_base(_Hash_node<_Value, true>* __p,
00913                std::size_t __bkt, std::size_t __bkt_count)
00914       : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
00915 
00916       void
00917       _M_incr()
00918       {
00919     _M_cur = _M_cur->_M_next();
00920     if (_M_cur)
00921       {
00922         std::size_t __bkt = _M_h2()(_M_cur->_M_hash_code, _M_bucket_count);
00923         if (__bkt != _M_bucket)
00924           _M_cur = nullptr;
00925       }
00926       }
00927 
00928       const _H2& _M_h2() const
00929       { return *this; }
00930 
00931       _Hash_node<_Value, true>*  _M_cur;
00932       std::size_t _M_bucket;
00933       std::size_t _M_bucket_count;
00934     };
00935 
00936   template<typename _Key, typename _Value, typename _ExtractKey,
00937        typename _H1, typename _H2, typename _Hash>
00938     struct _Local_iterator_base<_Key, _Value, _ExtractKey,
00939                 _H1, _H2, _Hash, false>
00940       : private _Hash_code_base<_Key, _Value, _ExtractKey,
00941                 _H1, _H2, _Hash, false>
00942     {
00943       _Local_iterator_base() = default;
00944       _Local_iterator_base(_Hash_node<_Value, false>* __p,
00945                std::size_t __bkt, std::size_t __bkt_count)
00946       : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
00947 
00948       void
00949       _M_incr()
00950       {
00951     _M_cur = _M_cur->_M_next();
00952     if (_M_cur)
00953       {
00954         std::size_t __bkt = this->_M_bucket_index(_M_cur, _M_bucket_count);
00955         if (__bkt != _M_bucket)
00956           _M_cur = nullptr;
00957       }
00958       }
00959 
00960       _Hash_node<_Value, false>*  _M_cur;
00961       std::size_t _M_bucket;
00962       std::size_t _M_bucket_count;
00963     };
00964 
00965   template<typename _Key, typename _Value, typename _ExtractKey,
00966        typename _H1, typename _H2, typename _Hash, bool __cache>
00967     inline bool
00968     operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
00969                       _H1, _H2, _Hash, __cache>& __x,
00970            const _Local_iterator_base<_Key, _Value, _ExtractKey,
00971                       _H1, _H2, _Hash, __cache>& __y)
00972     { return __x._M_cur == __y._M_cur; }
00973 
00974   template<typename _Key, typename _Value, typename _ExtractKey,
00975        typename _H1, typename _H2, typename _Hash, bool __cache>
00976     inline bool
00977     operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
00978                       _H1, _H2, _Hash, __cache>& __x,
00979            const _Local_iterator_base<_Key, _Value, _ExtractKey,
00980                       _H1, _H2, _Hash, __cache>& __y)
00981     { return __x._M_cur != __y._M_cur; }
00982 
00983   template<typename _Key, typename _Value, typename _ExtractKey,
00984        typename _H1, typename _H2, typename _Hash,
00985        bool __constant_iterators, bool __cache>
00986     struct _Local_iterator
00987     : public _Local_iterator_base<_Key, _Value, _ExtractKey,
00988                   _H1, _H2, _Hash, __cache>
00989     {
00990       typedef _Value                                   value_type;
00991       typedef typename std::conditional<__constant_iterators,
00992                     const _Value*, _Value*>::type
00993                                pointer;
00994       typedef typename std::conditional<__constant_iterators,
00995                     const _Value&, _Value&>::type
00996                                reference;
00997       typedef std::ptrdiff_t                           difference_type;
00998       typedef std::forward_iterator_tag                iterator_category;
00999 
01000       _Local_iterator() = default;
01001 
01002       explicit
01003       _Local_iterator(_Hash_node<_Value, __cache>* __p,
01004               std::size_t __bkt, std::size_t __bkt_count)
01005       : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
01006                  __cache>(__p, __bkt, __bkt_count)
01007       { }
01008 
01009       reference
01010       operator*() const
01011       { return this->_M_cur->_M_v; }
01012 
01013       pointer
01014       operator->() const
01015       { return std::__addressof(this->_M_cur->_M_v); }
01016 
01017       _Local_iterator&
01018       operator++()
01019       {
01020     this->_M_incr();
01021     return *this;
01022       }
01023 
01024       _Local_iterator
01025       operator++(int)
01026       {
01027     _Local_iterator __tmp(*this);
01028     this->_M_incr();
01029     return __tmp;
01030       }
01031     };
01032 
01033   template<typename _Key, typename _Value, typename _ExtractKey,
01034        typename _H1, typename _H2, typename _Hash,
01035        bool __constant_iterators, bool __cache>
01036     struct _Local_const_iterator
01037     : public _Local_iterator_base<_Key, _Value, _ExtractKey,
01038                   _H1, _H2, _Hash, __cache>
01039     {
01040       typedef _Value                                   value_type;
01041       typedef const _Value*                            pointer;
01042       typedef const _Value&                            reference;
01043       typedef std::ptrdiff_t                           difference_type;
01044       typedef std::forward_iterator_tag                iterator_category;
01045 
01046       _Local_const_iterator() = default;
01047 
01048       explicit
01049       _Local_const_iterator(_Hash_node<_Value, __cache>* __p,
01050                 std::size_t __bkt, std::size_t __bkt_count)
01051       : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
01052                  __cache>(__p, __bkt, __bkt_count)
01053       { }
01054 
01055       _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
01056                           _H1, _H2, _Hash,
01057                           __constant_iterators,
01058                           __cache>& __x)
01059       : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
01060                  __cache>(__x._M_cur, __x._M_bucket,
01061                       __x._M_bucket_count)
01062       { }
01063 
01064       reference
01065       operator*() const
01066       { return this->_M_cur->_M_v; }
01067 
01068       pointer
01069       operator->() const
01070       { return std::__addressof(this->_M_cur->_M_v); }
01071 
01072       _Local_const_iterator&
01073       operator++()
01074       {
01075     this->_M_incr();
01076     return *this;
01077       }
01078 
01079       _Local_const_iterator
01080       operator++(int)
01081       {
01082     _Local_const_iterator __tmp(*this);
01083     this->_M_incr();
01084     return __tmp;
01085       }
01086     };
01087 
01088 
01089   // Class template _Equality_base.  This is for implementing equality
01090   // comparison for unordered containers, per N3068, by John Lakos and
01091   // Pablo Halpern.  Algorithmically, we follow closely the reference
01092   // implementations therein.
01093   template<typename _ExtractKey, bool __unique_keys,
01094        typename _Hashtable>
01095     struct _Equality_base;
01096 
01097   template<typename _ExtractKey, typename _Hashtable>
01098     struct _Equality_base<_ExtractKey, true, _Hashtable>
01099     {
01100       bool _M_equal(const _Hashtable&) const;
01101     };
01102 
01103   template<typename _ExtractKey, typename _Hashtable>
01104     bool
01105     _Equality_base<_ExtractKey, true, _Hashtable>::
01106     _M_equal(const _Hashtable& __other) const
01107     {
01108       const _Hashtable* __this = static_cast<const _Hashtable*>(this);
01109 
01110       if (__this->size() != __other.size())
01111     return false;
01112 
01113       for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
01114     {
01115       const auto __ity = __other.find(_ExtractKey()(*__itx));
01116       if (__ity == __other.end() || !bool(*__ity == *__itx))
01117         return false;
01118     }
01119       return true;
01120     }
01121 
01122   template<typename _ExtractKey, typename _Hashtable>
01123     struct _Equality_base<_ExtractKey, false, _Hashtable>
01124     {
01125       bool _M_equal(const _Hashtable&) const;
01126 
01127     private:
01128       template<typename _Uiterator>
01129     static bool
01130     _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
01131     };
01132 
01133   // See std::is_permutation in N3068.
01134   template<typename _ExtractKey, typename _Hashtable>
01135     template<typename _Uiterator>
01136       bool
01137       _Equality_base<_ExtractKey, false, _Hashtable>::
01138       _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
01139             _Uiterator __first2)
01140       {
01141     for (; __first1 != __last1; ++__first1, ++__first2)
01142       if (!(*__first1 == *__first2))
01143         break;
01144 
01145     if (__first1 == __last1)
01146       return true;
01147 
01148     _Uiterator __last2 = __first2;
01149     std::advance(__last2, std::distance(__first1, __last1));
01150 
01151     for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
01152       {
01153         _Uiterator __tmp =  __first1;
01154         while (__tmp != __it1 && !bool(*__tmp == *__it1))
01155           ++__tmp;
01156 
01157         // We've seen this one before.
01158         if (__tmp != __it1)
01159           continue;
01160 
01161         std::ptrdiff_t __n2 = 0;
01162         for (__tmp = __first2; __tmp != __last2; ++__tmp)
01163           if (*__tmp == *__it1)
01164         ++__n2;
01165 
01166         if (!__n2)
01167           return false;
01168 
01169         std::ptrdiff_t __n1 = 0;
01170         for (__tmp = __it1; __tmp != __last1; ++__tmp)
01171           if (*__tmp == *__it1)
01172         ++__n1;
01173 
01174         if (__n1 != __n2)
01175           return false;
01176       }
01177     return true;
01178       }
01179 
01180   template<typename _ExtractKey, typename _Hashtable>
01181     bool
01182     _Equality_base<_ExtractKey, false, _Hashtable>::
01183     _M_equal(const _Hashtable& __other) const
01184     {
01185       const _Hashtable* __this = static_cast<const _Hashtable*>(this);
01186 
01187       if (__this->size() != __other.size())
01188     return false;
01189 
01190       for (auto __itx = __this->begin(); __itx != __this->end();)
01191     {
01192       const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
01193       const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
01194 
01195       if (std::distance(__xrange.first, __xrange.second)
01196           != std::distance(__yrange.first, __yrange.second))
01197         return false;
01198 
01199       if (!_S_is_permutation(__xrange.first,
01200                  __xrange.second,
01201                  __yrange.first))
01202         return false;
01203 
01204       __itx = __xrange.second;
01205     }
01206       return true;
01207     }
01208 
01209 _GLIBCXX_END_NAMESPACE_VERSION
01210 } // namespace __detail
01211 } // namespace std
01212 
01213 #endif // _HASHTABLE_POLICY_H