libstdc++
bitmap_allocator.h
Go to the documentation of this file.
00001 // Bitmap Allocator. -*- C++ -*-
00002 
00003 // Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
00004 // Free Software Foundation, Inc.
00005 //
00006 // This file is part of the GNU ISO C++ Library.  This library is free
00007 // software; you can redistribute it and/or modify it under the
00008 // terms of the GNU General Public License as published by the
00009 // Free Software Foundation; either version 3, or (at your option)
00010 // any later version.
00011 
00012 // This library is distributed in the hope that it will be useful,
00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015 // GNU General Public License for more details.
00016 
00017 // Under Section 7 of GPL version 3, you are granted additional
00018 // permissions described in the GCC Runtime Library Exception, version
00019 // 3.1, as published by the Free Software Foundation.
00020 
00021 // You should have received a copy of the GNU General Public License and
00022 // a copy of the GCC Runtime Library Exception along with this program;
00023 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
00024 // <http://www.gnu.org/licenses/>.
00025 
00026 /** @file ext/bitmap_allocator.h
00027  *  This file is a GNU extension to the Standard C++ Library.
00028  */
00029 
00030 #ifndef _BITMAP_ALLOCATOR_H
00031 #define _BITMAP_ALLOCATOR_H 1
00032 
00033 #include <utility> // For std::pair.
00034 #include <bits/functexcept.h> // For __throw_bad_alloc().
00035 #include <functional> // For greater_equal, and less_equal.
00036 #include <new> // For operator new.
00037 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
00038 #include <ext/concurrence.h>
00039 #include <bits/move.h>
00040 
00041 /** @brief The constant in the expression below is the alignment
00042  * required in bytes.
00043  */
00044 #define _BALLOC_ALIGN_BYTES 8
00045 
00046 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
00047 {
00048   using std::size_t;
00049   using std::ptrdiff_t;
00050 
00051   namespace __detail
00052   {
00053   _GLIBCXX_BEGIN_NAMESPACE_VERSION
00054     /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
00055      *
00056      *  @brief  __mini_vector<> is a stripped down version of the
00057      *  full-fledged std::vector<>.
00058      *
00059      *  It is to be used only for built-in types or PODs. Notable
00060      *  differences are:
00061      * 
00062      *  1. Not all accessor functions are present.
00063      *  2. Used ONLY for PODs.
00064      *  3. No Allocator template argument. Uses ::operator new() to get
00065      *  memory, and ::operator delete() to free it.
00066      *  Caveat: The dtor does NOT free the memory allocated, so this a
00067      *  memory-leaking vector!
00068      */
00069     template<typename _Tp>
00070       class __mini_vector
00071       {
00072     __mini_vector(const __mini_vector&);
00073     __mini_vector& operator=(const __mini_vector&);
00074 
00075       public:
00076     typedef _Tp value_type;
00077     typedef _Tp* pointer;
00078     typedef _Tp& reference;
00079     typedef const _Tp& const_reference;
00080     typedef size_t size_type;
00081     typedef ptrdiff_t difference_type;
00082     typedef pointer iterator;
00083 
00084       private:
00085     pointer _M_start;
00086     pointer _M_finish;
00087     pointer _M_end_of_storage;
00088 
00089     size_type
00090     _M_space_left() const throw()
00091     { return _M_end_of_storage - _M_finish; }
00092 
00093     pointer
00094     allocate(size_type __n)
00095     { return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
00096 
00097     void
00098     deallocate(pointer __p, size_type)
00099     { ::operator delete(__p); }
00100 
00101       public:
00102     // Members used: size(), push_back(), pop_back(),
00103     // insert(iterator, const_reference), erase(iterator),
00104     // begin(), end(), back(), operator[].
00105 
00106     __mini_vector()
00107         : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
00108 
00109     size_type
00110     size() const throw()
00111     { return _M_finish - _M_start; }
00112 
00113     iterator
00114     begin() const throw()
00115     { return this->_M_start; }
00116 
00117     iterator
00118     end() const throw()
00119     { return this->_M_finish; }
00120 
00121     reference
00122     back() const throw()
00123     { return *(this->end() - 1); }
00124 
00125     reference
00126     operator[](const size_type __pos) const throw()
00127     { return this->_M_start[__pos]; }
00128 
00129     void
00130     insert(iterator __pos, const_reference __x);
00131 
00132     void
00133     push_back(const_reference __x)
00134     {
00135       if (this->_M_space_left())
00136         {
00137           *this->end() = __x;
00138           ++this->_M_finish;
00139         }
00140       else
00141         this->insert(this->end(), __x);
00142     }
00143 
00144     void
00145     pop_back() throw()
00146     { --this->_M_finish; }
00147 
00148     void
00149     erase(iterator __pos) throw();
00150 
00151     void
00152     clear() throw()
00153     { this->_M_finish = this->_M_start; }
00154       };
00155 
00156     // Out of line function definitions.
00157     template<typename _Tp>
00158       void __mini_vector<_Tp>::
00159       insert(iterator __pos, const_reference __x)
00160       {
00161     if (this->_M_space_left())
00162       {
00163         size_type __to_move = this->_M_finish - __pos;
00164         iterator __dest = this->end();
00165         iterator __src = this->end() - 1;
00166 
00167         ++this->_M_finish;
00168         while (__to_move)
00169           {
00170         *__dest = *__src;
00171         --__dest; --__src; --__to_move;
00172           }
00173         *__pos = __x;
00174       }
00175     else
00176       {
00177         size_type __new_size = this->size() ? this->size() * 2 : 1;
00178         iterator __new_start = this->allocate(__new_size);
00179         iterator __first = this->begin();
00180         iterator __start = __new_start;
00181         while (__first != __pos)
00182           {
00183         *__start = *__first;
00184         ++__start; ++__first;
00185           }
00186         *__start = __x;
00187         ++__start;
00188         while (__first != this->end())
00189           {
00190         *__start = *__first;
00191         ++__start; ++__first;
00192           }
00193         if (this->_M_start)
00194           this->deallocate(this->_M_start, this->size());
00195 
00196         this->_M_start = __new_start;
00197         this->_M_finish = __start;
00198         this->_M_end_of_storage = this->_M_start + __new_size;
00199       }
00200       }
00201 
00202     template<typename _Tp>
00203       void __mini_vector<_Tp>::
00204       erase(iterator __pos) throw()
00205       {
00206     while (__pos + 1 != this->end())
00207       {
00208         *__pos = __pos[1];
00209         ++__pos;
00210       }
00211     --this->_M_finish;
00212       }
00213 
00214 
00215     template<typename _Tp>
00216       struct __mv_iter_traits
00217       {
00218     typedef typename _Tp::value_type value_type;
00219     typedef typename _Tp::difference_type difference_type;
00220       };
00221 
00222     template<typename _Tp>
00223       struct __mv_iter_traits<_Tp*>
00224       {
00225     typedef _Tp value_type;
00226     typedef ptrdiff_t difference_type;
00227       };
00228 
00229     enum 
00230       { 
00231     bits_per_byte = 8,
00232     bits_per_block = sizeof(size_t) * size_t(bits_per_byte) 
00233       };
00234 
00235     template<typename _ForwardIterator, typename _Tp, typename _Compare>
00236       _ForwardIterator
00237       __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
00238             const _Tp& __val, _Compare __comp)
00239       {
00240     typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
00241       _DistanceType;
00242 
00243     _DistanceType __len = __last - __first;
00244     _DistanceType __half;
00245     _ForwardIterator __middle;
00246 
00247     while (__len > 0)
00248       {
00249         __half = __len >> 1;
00250         __middle = __first;
00251         __middle += __half;
00252         if (__comp(*__middle, __val))
00253           {
00254         __first = __middle;
00255         ++__first;
00256         __len = __len - __half - 1;
00257           }
00258         else
00259           __len = __half;
00260       }
00261     return __first;
00262       }
00263 
00264     /** @brief The number of Blocks pointed to by the address pair
00265      *  passed to the function.
00266      */
00267     template<typename _AddrPair>
00268       inline size_t
00269       __num_blocks(_AddrPair __ap)
00270       { return (__ap.second - __ap.first) + 1; }
00271 
00272     /** @brief The number of Bit-maps pointed to by the address pair
00273      *  passed to the function.
00274      */
00275     template<typename _AddrPair>
00276       inline size_t
00277       __num_bitmaps(_AddrPair __ap)
00278       { return __num_blocks(__ap) / size_t(bits_per_block); }
00279 
00280     // _Tp should be a pointer type.
00281     template<typename _Tp>
00282       class _Inclusive_between 
00283       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
00284       {
00285     typedef _Tp pointer;
00286     pointer _M_ptr_value;
00287     typedef typename std::pair<_Tp, _Tp> _Block_pair;
00288     
00289       public:
00290     _Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr) 
00291     { }
00292     
00293     bool 
00294     operator()(_Block_pair __bp) const throw()
00295     {
00296       if (std::less_equal<pointer>()(_M_ptr_value, __bp.second) 
00297           && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
00298         return true;
00299       else
00300         return false;
00301     }
00302       };
00303   
00304     // Used to pass a Functor to functions by reference.
00305     template<typename _Functor>
00306       class _Functor_Ref 
00307       : public std::unary_function<typename _Functor::argument_type, 
00308                    typename _Functor::result_type>
00309       {
00310     _Functor& _M_fref;
00311     
00312       public:
00313     typedef typename _Functor::argument_type argument_type;
00314     typedef typename _Functor::result_type result_type;
00315 
00316     _Functor_Ref(_Functor& __fref) : _M_fref(__fref) 
00317     { }
00318 
00319     result_type 
00320     operator()(argument_type __arg) 
00321     { return _M_fref(__arg); }
00322       };
00323 
00324     /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
00325      *
00326      *  @brief  The class which acts as a predicate for applying the
00327      *  first-fit memory allocation policy for the bitmap allocator.
00328      */
00329     // _Tp should be a pointer type, and _Alloc is the Allocator for
00330     // the vector.
00331     template<typename _Tp>
00332       class _Ffit_finder 
00333       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
00334       {
00335     typedef typename std::pair<_Tp, _Tp> _Block_pair;
00336     typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
00337     typedef typename _BPVector::difference_type _Counter_type;
00338 
00339     size_t* _M_pbitmap;
00340     _Counter_type _M_data_offset;
00341 
00342       public:
00343     _Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
00344     { }
00345 
00346     bool 
00347     operator()(_Block_pair __bp) throw()
00348     {
00349       // Set the _rover to the last physical location bitmap,
00350       // which is the bitmap which belongs to the first free
00351       // block. Thus, the bitmaps are in exact reverse order of
00352       // the actual memory layout. So, we count down the bitmaps,
00353       // which is the same as moving up the memory.
00354 
00355       // If the used count stored at the start of the Bit Map headers
00356       // is equal to the number of Objects that the current Block can
00357       // store, then there is definitely no space for another single
00358       // object, so just return false.
00359       _Counter_type __diff = __detail::__num_bitmaps(__bp);
00360 
00361       if (*(reinterpret_cast<size_t*>
00362         (__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
00363         return false;
00364 
00365       size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
00366 
00367       for (_Counter_type __i = 0; __i < __diff; ++__i)
00368         {
00369           _M_data_offset = __i;
00370           if (*__rover)
00371         {
00372           _M_pbitmap = __rover;
00373           return true;
00374         }
00375           --__rover;
00376         }
00377       return false;
00378     }
00379     
00380     size_t*
00381     _M_get() const throw()
00382     { return _M_pbitmap; }
00383 
00384     _Counter_type
00385     _M_offset() const throw()
00386     { return _M_data_offset * size_t(bits_per_block); }
00387       };
00388 
00389     /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
00390      *
00391      *  @brief  The bitmap counter which acts as the bitmap
00392      *  manipulator, and manages the bit-manipulation functions and
00393      *  the searching and identification functions on the bit-map.
00394      */
00395     // _Tp should be a pointer type.
00396     template<typename _Tp>
00397       class _Bitmap_counter
00398       {
00399     typedef typename
00400     __detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
00401     typedef typename _BPVector::size_type _Index_type;
00402     typedef _Tp pointer;
00403 
00404     _BPVector& _M_vbp;
00405     size_t* _M_curr_bmap;
00406     size_t* _M_last_bmap_in_block;
00407     _Index_type _M_curr_index;
00408     
00409       public:
00410     // Use the 2nd parameter with care. Make sure that such an
00411     // entry exists in the vector before passing that particular
00412     // index to this ctor.
00413     _Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
00414     { this->_M_reset(__index); }
00415     
00416     void 
00417     _M_reset(long __index = -1) throw()
00418     {
00419       if (__index == -1)
00420         {
00421           _M_curr_bmap = 0;
00422           _M_curr_index = static_cast<_Index_type>(-1);
00423           return;
00424         }
00425 
00426       _M_curr_index = __index;
00427       _M_curr_bmap = reinterpret_cast<size_t*>
00428         (_M_vbp[_M_curr_index].first) - 1;
00429       
00430       _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
00431     
00432       _M_last_bmap_in_block = _M_curr_bmap
00433         - ((_M_vbp[_M_curr_index].second 
00434         - _M_vbp[_M_curr_index].first + 1) 
00435            / size_t(bits_per_block) - 1);
00436     }
00437     
00438     // Dangerous Function! Use with extreme care. Pass to this
00439     // function ONLY those values that are known to be correct,
00440     // otherwise this will mess up big time.
00441     void
00442     _M_set_internal_bitmap(size_t* __new_internal_marker) throw()
00443     { _M_curr_bmap = __new_internal_marker; }
00444     
00445     bool
00446     _M_finished() const throw()
00447     { return(_M_curr_bmap == 0); }
00448     
00449     _Bitmap_counter&
00450     operator++() throw()
00451     {
00452       if (_M_curr_bmap == _M_last_bmap_in_block)
00453         {
00454           if (++_M_curr_index == _M_vbp.size())
00455         _M_curr_bmap = 0;
00456           else
00457         this->_M_reset(_M_curr_index);
00458         }
00459       else
00460         --_M_curr_bmap;
00461       return *this;
00462     }
00463     
00464     size_t*
00465     _M_get() const throw()
00466     { return _M_curr_bmap; }
00467     
00468     pointer 
00469     _M_base() const throw()
00470     { return _M_vbp[_M_curr_index].first; }
00471 
00472     _Index_type
00473     _M_offset() const throw()
00474     {
00475       return size_t(bits_per_block)
00476         * ((reinterpret_cast<size_t*>(this->_M_base()) 
00477         - _M_curr_bmap) - 1);
00478     }
00479     
00480     _Index_type
00481     _M_where() const throw()
00482     { return _M_curr_index; }
00483       };
00484 
00485     /** @brief  Mark a memory address as allocated by re-setting the
00486      *  corresponding bit in the bit-map.
00487      */
00488     inline void 
00489     __bit_allocate(size_t* __pbmap, size_t __pos) throw()
00490     {
00491       size_t __mask = 1 << __pos;
00492       __mask = ~__mask;
00493       *__pbmap &= __mask;
00494     }
00495   
00496     /** @brief  Mark a memory address as free by setting the
00497      *  corresponding bit in the bit-map.
00498      */
00499     inline void 
00500     __bit_free(size_t* __pbmap, size_t __pos) throw()
00501     {
00502       size_t __mask = 1 << __pos;
00503       *__pbmap |= __mask;
00504     }
00505 
00506   _GLIBCXX_END_NAMESPACE_VERSION
00507   } // namespace __detail
00508 
00509 _GLIBCXX_BEGIN_NAMESPACE_VERSION
00510 
00511   /** @brief  Generic Version of the bsf instruction.
00512    */
00513   inline size_t 
00514   _Bit_scan_forward(size_t __num)
00515   { return static_cast<size_t>(__builtin_ctzl(__num)); }
00516 
00517   /** @class  free_list bitmap_allocator.h bitmap_allocator.h
00518    *
00519    *  @brief  The free list class for managing chunks of memory to be
00520    *  given to and returned by the bitmap_allocator.
00521    */
00522   class free_list
00523   {
00524   public:
00525     typedef size_t*                 value_type;
00526     typedef __detail::__mini_vector<value_type> vector_type;
00527     typedef vector_type::iterator       iterator;
00528     typedef __mutex             __mutex_type;
00529 
00530   private:
00531     struct _LT_pointer_compare
00532     {
00533       bool
00534       operator()(const size_t* __pui, 
00535          const size_t __cui) const throw()
00536       { return *__pui < __cui; }
00537     };
00538 
00539 #if defined __GTHREADS
00540     __mutex_type&
00541     _M_get_mutex()
00542     {
00543       static __mutex_type _S_mutex;
00544       return _S_mutex;
00545     }
00546 #endif
00547 
00548     vector_type&
00549     _M_get_free_list()
00550     {
00551       static vector_type _S_free_list;
00552       return _S_free_list;
00553     }
00554 
00555     /** @brief  Performs validation of memory based on their size.
00556      *
00557      *  @param  __addr The pointer to the memory block to be
00558      *  validated.
00559      *
00560      *  Validates the memory block passed to this function and
00561      *  appropriately performs the action of managing the free list of
00562      *  blocks by adding this block to the free list or deleting this
00563      *  or larger blocks from the free list.
00564      */
00565     void
00566     _M_validate(size_t* __addr) throw()
00567     {
00568       vector_type& __free_list = _M_get_free_list();
00569       const vector_type::size_type __max_size = 64;
00570       if (__free_list.size() >= __max_size)
00571     {
00572       // Ok, the threshold value has been reached.  We determine
00573       // which block to remove from the list of free blocks.
00574       if (*__addr >= *__free_list.back())
00575         {
00576           // Ok, the new block is greater than or equal to the
00577           // last block in the list of free blocks. We just free
00578           // the new block.
00579           ::operator delete(static_cast<void*>(__addr));
00580           return;
00581         }
00582       else
00583         {
00584           // Deallocate the last block in the list of free lists,
00585           // and insert the new one in its correct position.
00586           ::operator delete(static_cast<void*>(__free_list.back()));
00587           __free_list.pop_back();
00588         }
00589     }
00590       
00591       // Just add the block to the list of free lists unconditionally.
00592       iterator __temp = __detail::__lower_bound
00593     (__free_list.begin(), __free_list.end(), 
00594      *__addr, _LT_pointer_compare());
00595 
00596       // We may insert the new free list before _temp;
00597       __free_list.insert(__temp, __addr);
00598     }
00599 
00600     /** @brief  Decides whether the wastage of memory is acceptable for
00601      *  the current memory request and returns accordingly.
00602      *
00603      *  @param __block_size The size of the block available in the free
00604      *  list.
00605      *
00606      *  @param __required_size The required size of the memory block.
00607      *
00608      *  @return true if the wastage incurred is acceptable, else returns
00609      *  false.
00610      */
00611     bool 
00612     _M_should_i_give(size_t __block_size, 
00613              size_t __required_size) throw()
00614     {
00615       const size_t __max_wastage_percentage = 36;
00616       if (__block_size >= __required_size && 
00617       (((__block_size - __required_size) * 100 / __block_size)
00618        < __max_wastage_percentage))
00619     return true;
00620       else
00621     return false;
00622     }
00623 
00624   public:
00625     /** @brief This function returns the block of memory to the
00626      *  internal free list.
00627      *
00628      *  @param  __addr The pointer to the memory block that was given
00629      *  by a call to the _M_get function.
00630      */
00631     inline void 
00632     _M_insert(size_t* __addr) throw()
00633     {
00634 #if defined __GTHREADS
00635       __scoped_lock __bfl_lock(_M_get_mutex());
00636 #endif
00637       // Call _M_validate to decide what should be done with
00638       // this particular free list.
00639       this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
00640       // See discussion as to why this is 1!
00641     }
00642     
00643     /** @brief  This function gets a block of memory of the specified
00644      *  size from the free list.
00645      *
00646      *  @param  __sz The size in bytes of the memory required.
00647      *
00648      *  @return  A pointer to the new memory block of size at least
00649      *  equal to that requested.
00650      */
00651     size_t*
00652     _M_get(size_t __sz) throw(std::bad_alloc);
00653 
00654     /** @brief  This function just clears the internal Free List, and
00655      *  gives back all the memory to the OS.
00656      */
00657     void 
00658     _M_clear();
00659   };
00660 
00661 
00662   // Forward declare the class.
00663   template<typename _Tp> 
00664     class bitmap_allocator;
00665 
00666   // Specialize for void:
00667   template<>
00668     class bitmap_allocator<void>
00669     {
00670     public:
00671       typedef void*       pointer;
00672       typedef const void* const_pointer;
00673 
00674       // Reference-to-void members are impossible.
00675       typedef void  value_type;
00676       template<typename _Tp1>
00677         struct rebind
00678     {
00679       typedef bitmap_allocator<_Tp1> other;
00680     };
00681     };
00682 
00683   /**
00684    * @brief Bitmap Allocator, primary template.
00685    * @ingroup allocators
00686    */
00687   template<typename _Tp>
00688     class bitmap_allocator : private free_list
00689     {
00690     public:
00691       typedef size_t            size_type;
00692       typedef ptrdiff_t         difference_type;
00693       typedef _Tp*              pointer;
00694       typedef const _Tp*        const_pointer;
00695       typedef _Tp&              reference;
00696       typedef const _Tp&        const_reference;
00697       typedef _Tp               value_type;
00698       typedef free_list::__mutex_type   __mutex_type;
00699 
00700       template<typename _Tp1>
00701         struct rebind
00702     {
00703       typedef bitmap_allocator<_Tp1> other;
00704     };
00705 
00706     private:
00707       template<size_t _BSize, size_t _AlignSize>
00708         struct aligned_size
00709     {
00710       enum
00711         { 
00712           modulus = _BSize % _AlignSize,
00713           value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
00714         };
00715     };
00716 
00717       struct _Alloc_block
00718       {
00719     char __M_unused[aligned_size<sizeof(value_type),
00720             _BALLOC_ALIGN_BYTES>::value];
00721       };
00722 
00723 
00724       typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
00725 
00726       typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
00727       typedef typename _BPVector::iterator _BPiter;
00728 
00729       template<typename _Predicate>
00730         static _BPiter
00731         _S_find(_Predicate __p)
00732         {
00733       _BPiter __first = _S_mem_blocks.begin();
00734       while (__first != _S_mem_blocks.end() && !__p(*__first))
00735         ++__first;
00736       return __first;
00737     }
00738 
00739 #if defined _GLIBCXX_DEBUG
00740       // Complexity: O(lg(N)). Where, N is the number of block of size
00741       // sizeof(value_type).
00742       void 
00743       _S_check_for_free_blocks() throw()
00744       {
00745     typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
00746     _BPiter __bpi = _S_find(_FFF());
00747 
00748     _GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
00749       }
00750 #endif
00751 
00752       /** @brief  Responsible for exponentially growing the internal
00753        *  memory pool.
00754        *
00755        *  @throw  std::bad_alloc. If memory can not be allocated.
00756        *
00757        *  Complexity: O(1), but internally depends upon the
00758        *  complexity of the function free_list::_M_get. The part where
00759        *  the bitmap headers are written has complexity: O(X),where X
00760        *  is the number of blocks of size sizeof(value_type) within
00761        *  the newly acquired block. Having a tight bound.
00762        */
00763       void 
00764       _S_refill_pool() throw(std::bad_alloc)
00765       {
00766 #if defined _GLIBCXX_DEBUG
00767     _S_check_for_free_blocks();
00768 #endif
00769 
00770     const size_t __num_bitmaps = (_S_block_size
00771                       / size_t(__detail::bits_per_block));
00772     const size_t __size_to_allocate = sizeof(size_t) 
00773       + _S_block_size * sizeof(_Alloc_block) 
00774       + __num_bitmaps * sizeof(size_t);
00775 
00776     size_t* __temp =
00777       reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
00778     *__temp = 0;
00779     ++__temp;
00780 
00781     // The Header information goes at the Beginning of the Block.
00782     _Block_pair __bp = 
00783       std::make_pair(reinterpret_cast<_Alloc_block*>
00784              (__temp + __num_bitmaps), 
00785              reinterpret_cast<_Alloc_block*>
00786              (__temp + __num_bitmaps) 
00787              + _S_block_size - 1);
00788     
00789     // Fill the Vector with this information.
00790     _S_mem_blocks.push_back(__bp);
00791 
00792     for (size_t __i = 0; __i < __num_bitmaps; ++__i)
00793       __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
00794 
00795     _S_block_size *= 2;
00796       }
00797 
00798       static _BPVector _S_mem_blocks;
00799       static size_t _S_block_size;
00800       static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
00801       static typename _BPVector::size_type _S_last_dealloc_index;
00802 #if defined __GTHREADS
00803       static __mutex_type _S_mut;
00804 #endif
00805 
00806     public:
00807 
00808       /** @brief  Allocates memory for a single object of size
00809        *  sizeof(_Tp).
00810        *
00811        *  @throw  std::bad_alloc. If memory can not be allocated.
00812        *
00813        *  Complexity: Worst case complexity is O(N), but that
00814        *  is hardly ever hit. If and when this particular case is
00815        *  encountered, the next few cases are guaranteed to have a
00816        *  worst case complexity of O(1)!  That's why this function
00817        *  performs very well on average. You can consider this
00818        *  function to have a complexity referred to commonly as:
00819        *  Amortized Constant time.
00820        */
00821       pointer 
00822       _M_allocate_single_object() throw(std::bad_alloc)
00823       {
00824 #if defined __GTHREADS
00825     __scoped_lock __bit_lock(_S_mut);
00826 #endif
00827 
00828     // The algorithm is something like this: The last_request
00829     // variable points to the last accessed Bit Map. When such a
00830     // condition occurs, we try to find a free block in the
00831     // current bitmap, or succeeding bitmaps until the last bitmap
00832     // is reached. If no free block turns up, we resort to First
00833     // Fit method.
00834 
00835     // WARNING: Do not re-order the condition in the while
00836     // statement below, because it relies on C++'s short-circuit
00837     // evaluation. The return from _S_last_request->_M_get() will
00838     // NOT be dereference able if _S_last_request->_M_finished()
00839     // returns true. This would inevitably lead to a NULL pointer
00840     // dereference if tinkered with.
00841     while (_S_last_request._M_finished() == false
00842            && (*(_S_last_request._M_get()) == 0))
00843       _S_last_request.operator++();
00844 
00845     if (__builtin_expect(_S_last_request._M_finished() == true, false))
00846       {
00847         // Fall Back to First Fit algorithm.
00848         typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
00849         _FFF __fff;
00850         _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
00851 
00852         if (__bpi != _S_mem_blocks.end())
00853           {
00854         // Search was successful. Ok, now mark the first bit from
00855         // the right as 0, meaning Allocated. This bit is obtained
00856         // by calling _M_get() on __fff.
00857         size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
00858         __detail::__bit_allocate(__fff._M_get(), __nz_bit);
00859 
00860         _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
00861 
00862         // Now, get the address of the bit we marked as allocated.
00863         pointer __ret = reinterpret_cast<pointer>
00864           (__bpi->first + __fff._M_offset() + __nz_bit);
00865         size_t* __puse_count = 
00866           reinterpret_cast<size_t*>
00867           (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
00868         
00869         ++(*__puse_count);
00870         return __ret;
00871           }
00872         else
00873           {
00874         // Search was unsuccessful. We Add more memory to the
00875         // pool by calling _S_refill_pool().
00876         _S_refill_pool();
00877 
00878         // _M_Reset the _S_last_request structure to the first
00879         // free block's bit map.
00880         _S_last_request._M_reset(_S_mem_blocks.size() - 1);
00881 
00882         // Now, mark that bit as allocated.
00883           }
00884       }
00885 
00886     // _S_last_request holds a pointer to a valid bit map, that
00887     // points to a free block in memory.
00888     size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
00889     __detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
00890 
00891     pointer __ret = reinterpret_cast<pointer>
00892       (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
00893 
00894     size_t* __puse_count = reinterpret_cast<size_t*>
00895       (_S_mem_blocks[_S_last_request._M_where()].first)
00896       - (__detail::
00897          __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
00898 
00899     ++(*__puse_count);
00900     return __ret;
00901       }
00902 
00903       /** @brief  Deallocates memory that belongs to a single object of
00904        *  size sizeof(_Tp).
00905        *
00906        *  Complexity: O(lg(N)), but the worst case is not hit
00907        *  often!  This is because containers usually deallocate memory
00908        *  close to each other and this case is handled in O(1) time by
00909        *  the deallocate function.
00910        */
00911       void 
00912       _M_deallocate_single_object(pointer __p) throw()
00913       {
00914 #if defined __GTHREADS
00915     __scoped_lock __bit_lock(_S_mut);
00916 #endif
00917     _Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
00918 
00919     typedef typename _BPVector::iterator _Iterator;
00920     typedef typename _BPVector::difference_type _Difference_type;
00921 
00922     _Difference_type __diff;
00923     long __displacement;
00924 
00925     _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
00926 
00927     __detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
00928     if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
00929       {
00930         _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
00931                   <= _S_mem_blocks.size() - 1);
00932 
00933         // Initial Assumption was correct!
00934         __diff = _S_last_dealloc_index;
00935         __displacement = __real_p - _S_mem_blocks[__diff].first;
00936       }
00937     else
00938       {
00939         _Iterator _iter = _S_find(__ibt);
00940 
00941         _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
00942 
00943         __diff = _iter - _S_mem_blocks.begin();
00944         __displacement = __real_p - _S_mem_blocks[__diff].first;
00945         _S_last_dealloc_index = __diff;
00946       }
00947 
00948     // Get the position of the iterator that has been found.
00949     const size_t __rotate = (__displacement
00950                  % size_t(__detail::bits_per_block));
00951     size_t* __bitmapC = 
00952       reinterpret_cast<size_t*>
00953       (_S_mem_blocks[__diff].first) - 1;
00954     __bitmapC -= (__displacement / size_t(__detail::bits_per_block));
00955       
00956     __detail::__bit_free(__bitmapC, __rotate);
00957     size_t* __puse_count = reinterpret_cast<size_t*>
00958       (_S_mem_blocks[__diff].first)
00959       - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
00960     
00961     _GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
00962 
00963     --(*__puse_count);
00964 
00965     if (__builtin_expect(*__puse_count == 0, false))
00966       {
00967         _S_block_size /= 2;
00968       
00969         // We can safely remove this block.
00970         // _Block_pair __bp = _S_mem_blocks[__diff];
00971         this->_M_insert(__puse_count);
00972         _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
00973 
00974         // Reset the _S_last_request variable to reflect the
00975         // erased block. We do this to protect future requests
00976         // after the last block has been removed from a particular
00977         // memory Chunk, which in turn has been returned to the
00978         // free list, and hence had been erased from the vector,
00979         // so the size of the vector gets reduced by 1.
00980         if ((_Difference_type)_S_last_request._M_where() >= __diff--)
00981           _S_last_request._M_reset(__diff); 
00982 
00983         // If the Index into the vector of the region of memory
00984         // that might hold the next address that will be passed to
00985         // deallocated may have been invalidated due to the above
00986         // erase procedure being called on the vector, hence we
00987         // try to restore this invariant too.
00988         if (_S_last_dealloc_index >= _S_mem_blocks.size())
00989           {
00990         _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
00991         _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
00992           }
00993       }
00994       }
00995 
00996     public:
00997       bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
00998       { }
00999 
01000       bitmap_allocator(const bitmap_allocator&) _GLIBCXX_USE_NOEXCEPT
01001       { }
01002 
01003       template<typename _Tp1>
01004         bitmap_allocator(const bitmap_allocator<_Tp1>&) _GLIBCXX_USE_NOEXCEPT
01005         { }
01006 
01007       ~bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
01008       { }
01009 
01010       pointer 
01011       allocate(size_type __n)
01012       {
01013     if (__n > this->max_size())
01014       std::__throw_bad_alloc();
01015 
01016     if (__builtin_expect(__n == 1, true))
01017       return this->_M_allocate_single_object();
01018     else
01019       { 
01020         const size_type __b = __n * sizeof(value_type);
01021         return reinterpret_cast<pointer>(::operator new(__b));
01022       }
01023       }
01024 
01025       pointer 
01026       allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
01027       { return allocate(__n); }
01028 
01029       void 
01030       deallocate(pointer __p, size_type __n) throw()
01031       {
01032     if (__builtin_expect(__p != 0, true))
01033       {
01034         if (__builtin_expect(__n == 1, true))
01035           this->_M_deallocate_single_object(__p);
01036         else
01037 	      ::operator delete(__p);
01038       }
01039       }
01040 
01041       pointer 
01042       address(reference __r) const _GLIBCXX_NOEXCEPT
01043       { return std::__addressof(__r); }
01044 
01045       const_pointer 
01046       address(const_reference __r) const _GLIBCXX_NOEXCEPT
01047       { return std::__addressof(__r); }
01048 
01049       size_type 
01050       max_size() const _GLIBCXX_USE_NOEXCEPT
01051       { return size_type(-1) / sizeof(value_type); }
01052 
01053 #ifdef __GXX_EXPERIMENTAL_CXX0X__
01054       template<typename _Up, typename... _Args>
01055         void
01056         construct(_Up* __p, _Args&&... __args)
01057     { ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }
01058 
01059       template<typename _Up>
01060         void 
01061         destroy(_Up* __p)
01062         { __p->~_Up(); }
01063 #else
01064       void 
01065       construct(pointer __p, const_reference __data)
01066       { ::new((void *)__p) value_type(__data); }
01067 
01068       void 
01069       destroy(pointer __p)
01070       { __p->~value_type(); }
01071 #endif
01072     };
01073 
01074   template<typename _Tp1, typename _Tp2>
01075     bool 
01076     operator==(const bitmap_allocator<_Tp1>&, 
01077            const bitmap_allocator<_Tp2>&) throw()
01078     { return true; }
01079   
01080   template<typename _Tp1, typename _Tp2>
01081     bool 
01082     operator!=(const bitmap_allocator<_Tp1>&, 
01083            const bitmap_allocator<_Tp2>&) throw() 
01084   { return false; }
01085 
01086   // Static member definitions.
01087   template<typename _Tp>
01088     typename bitmap_allocator<_Tp>::_BPVector
01089     bitmap_allocator<_Tp>::_S_mem_blocks;
01090 
01091   template<typename _Tp>
01092     size_t bitmap_allocator<_Tp>::_S_block_size = 
01093     2 * size_t(__detail::bits_per_block);
01094 
01095   template<typename _Tp>
01096     typename bitmap_allocator<_Tp>::_BPVector::size_type 
01097     bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
01098 
01099   template<typename _Tp>
01100     __detail::_Bitmap_counter
01101       <typename bitmap_allocator<_Tp>::_Alloc_block*>
01102     bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
01103 
01104 #if defined __GTHREADS
01105   template<typename _Tp>
01106     typename bitmap_allocator<_Tp>::__mutex_type
01107     bitmap_allocator<_Tp>::_S_mut;
01108 #endif
01109 
01110 _GLIBCXX_END_NAMESPACE_VERSION
01111 } // namespace __gnu_cxx
01112 
01113 #endif 
01114