[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
These `-m' options are defined for Motorola 88k architectures:
-m88000
-m88100
-m88110
-mbig-pic
-midentify-revision
ident
directive in the assembler output recording the
source file name, compiler name and version, timestamp, and compilation
flags used.
-mno-underscores
-mocs-debug-info
-mno-ocs-debug-info
-mocs-frame-position
-mno-ocs-frame-position
-moptimize-arg-area
-mno-optimize-arg-area
-mshort-data-num
r0
,
which allows loading a value using a single instruction (rather than the
usual two). You control which data references are affected by
specifying num with this option. For example, if you specify
`-mshort-data-512', then the data references affected are those
involving displacements of less than 512 bytes.
`-mshort-data-num' is not effective for num greater
than 64k.
-mserialize-volatile
-mno-serialize-volatile
The order of memory references made by the MC88110 processor does not always match the order of the instructions requesting those references. In particular, a load instruction may execute before a preceding store instruction. Such reordering violates sequential consistency of volatile memory references, when there are multiple processors. When consistency must be guaranteed, GNU C generates special instructions, as needed, to force execution in the proper order.
The MC88100 processor does not reorder memory references and so always provides sequential consistency. However, by default, GNU C generates the special instructions to guarantee consistency even when you use `-m88100', so that the code may be run on an MC88110 processor. If you intend to run your code only on the MC88100 processor, you may use `-mno-serialize-volatile'.
The extra code generated to guarantee consistency may affect the performance of your application. If you know that you can safely forgo this guarantee, you may use `-mno-serialize-volatile'.
-msvr4
-msvr3
`-msvr4' is the default for the m88k-motorola-sysv4 and m88k-dg-dgux m88k configurations. `-msvr3' is the default for all other m88k configurations.
-mversion-03.00
-mno-check-zero-division
-mcheck-zero-division
Some models of the MC88100 processor fail to trap upon integer division by zero under certain conditions. By default, when compiling code that might be run on such a processor, GNU C generates code that explicitly checks for zero-valued divisors and traps with exception number 503 when one is detected. Use of mno-check-zero-division suppresses such checking for code generated to run on an MC88100 processor.
GNU C assumes that the MC88110 processor correctly detects all instances of integer division by zero. When `-m88110' is specified, both `-mcheck-zero-division' and `-mno-check-zero-division' are ignored, and no explicit checks for zero-valued divisors are generated.
-muse-div-instruction
On the MC88100 processor the signed integer division instruction div) traps to the operating system on a negative operand. The operating system transparently completes the operation, but at a large cost in execution time. By default, when compiling code that might be run on an MC88100 processor, GNU C emulates signed integer division using the unsigned integer division instruction divu), thereby avoiding the large penalty of a trap to the operating system. Such emulation has its own, smaller, execution cost in both time and space. To the extent that your code's important signed integer division operations are performed on two nonnegative operands, it may be desirable to use the div instruction directly.
On the MC88110 processor the div instruction (also known as the divs instruction) processes negative operands without trapping to the operating system. When `-m88110' is specified, `-muse-div-instruction' is ignored, and the div instruction is used for signed integer division.
Note that the result of dividing INT_MIN
by -1 is undefined. In
particular, the behavior of such a division with and without
`-muse-div-instruction' may differ.
-mtrap-large-shift
-mhandle-large-shift
-mwarn-passed-structs
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |