[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
GNU CC provides a large number of built-in functions other than the ones mentioned above. Some of these are for internal use in the processing of exceptions or variable-length argument lists and will not be documented here because they may change from time to time; we do not recommend general use of these functions.
The remaining functions are provided for optimization purposes.
GNU CC includes built-in versions of many of the functions in the
standard C library. The versions prefixed with __builtin_
will
always be treated as having the same meaning as the C library function
even if you specify the `-fno-builtin' (see section 3.4 Options Controlling C Dialect)
option. Many of these functions are only optimized in certain cases; if
not optimized in a particular case, a call to the library function will
be emitted.
The functions abort
, exit
, _Exit
and _exit
are recognized and presumed not to return, but otherwise are not built
in. _exit
is not recognized in strict ISO C mode (`-ansi',
`-std=c89' or `-std=c99'). _Exit
is not recognized in
strict C89 mode (`-ansi' or `-std=c89').
Outside strict ISO C mode, the functions alloca
, bcmp
,
bzero
, index
, rindex
and ffs
may be handled
as built-in functions. Corresponding versions __builtin_alloca
,
__builtin_bcmp
, __builtin_bzero
, __builtin_index
,
__builtin_rindex
and __builtin_ffs
are also recognized in
strict ISO C mode.
The ISO C99 functions conj
, conjf
, conjl
,
creal
, crealf
, creall
, cimag
, cimagf
,
cimagl
, llabs
and imaxabs
are handled as built-in functions
except in strict ISO C89 mode. There are also built-in versions of the ISO C99
functions cosf
, cosl
, fabsf
, fabsl
,
sinf
, sinl
, sqrtf
, and sqrtl
, that are
recognized in any mode since ISO C89 reserves these names for the
purpose to which ISO C99 puts them. All these functions have
corresponding versions prefixed with __builtin_
.
The following ISO C89 functions are recognized as built-in functions unless
`-fno-builtin' is specified: abs
, cos
, fabs
,
fprintf
, fputs
, labs
, memcmp
, memcpy
,
memset
, printf
, sin
, sqrt
, strcat
,
strchr
, strcmp
, strcpy
, strcspn
,
strlen
, strncat
, strncmp
, strncpy
,
strpbrk
, strrchr
, strspn
, and strstr
. All
of these functions have corresponding versions prefixed with
__builtin_
.
GNU CC provides built-in versions of the ISO C99 floating point
comparison macros (that avoid raising exceptions for unordered
operands): __builtin_isgreater
, __builtin_isgreaterequal
,
__builtin_isless
, __builtin_islessequal
,
__builtin_islessgreater
, and __builtin_isunordered
.
__builtin_constant_p
to
determine if a value is known to be constant at compile-time and hence
that GNU CC can perform constant-folding on expressions involving that
value. The argument of the function is the value to test. The function
returns the integer 1 if the argument is known to be a compile-time
constant and 0 if it is not known to be a compile-time constant. A
return of 0 does not indicate that the value is not a constant,
but merely that GNU CC cannot prove it is a constant with the specified
value of the `-O' option.
You would typically use this function in an embedded application where memory was a critical resource. If you have some complex calculation, you may want it to be folded if it involves constants, but need to call a function if it does not. For example:
#define Scale_Value(X) \ (__builtin_constant_p (X) \ ? ((X) * SCALE + OFFSET) : Scale (X)) |
You may use this built-in function in either a macro or an inline function. However, if you use it in an inlined function and pass an argument of the function as the argument to the built-in, GNU CC will never return 1 when you call the inline function with a string constant or compound literal (see section 5.21 Compound Literals) and will not return 1 when you pass a constant numeric value to the inline function unless you specify the `-O' option.
__builtin_expect
to provide the compiler with
branch prediction information. In general, you should prefer to
use actual profile feedback for this (`-fprofile-arcs'), as
programmers are notoriously bad at predicting how their programs
actually perform. However, there are applications in which this
data is hard to collect.
The return value is the value of exp, which should be an integral expression. The value of c must be a compile-time constant. The semantics of the built-in are that it is expected that exp == c. For example:
if (__builtin_expect (x, 0)) foo (); |
would indicate that we do not expect to call foo
, since
we expect x
to be zero. Since you are limited to integral
expressions for exp, you should use constructions such as
if (__builtin_expect (ptr != NULL, 1)) error (); |
when testing pointer or floating-point values.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |