
Enhancing Syntax Error Messages Appears Ineffectual

Paul Denny, Andrew Luxton-Reilly, Dave Carpenter
Dept. of Computer Science
The University of Auckland

Auckland, New Zealand
{paul, andrew}@cs.auckland.ac.nz, dcar111@aucklanduni.ac.nz

ABSTRACT
Debugging is an important skill for novice programmers to
acquire. Error messages help novices to locate and correct
errors, but compiler messages are frequently inadequate. We
have developed a system that provides enhanced error mes-
sages, including concrete examples that illustrate the kind
of error that has occurred and how that kind of error could
be corrected. We evaluate the effectiveness of the enhanced
error messages with a controlled empirical study and find no
significant effect.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—computer science education

General Terms
Design, Human Factors

Keywords
debugging; errors; syntax error; error messages; feedback;
novice; programming

1. INTRODUCTION
Despite numerous studies on debugging, it remains a dif-

ficult skill for novices to acquire [12]. Code written by stu-
dents can be filled with errors, and poor debugging skills can
lead to frustration and the introduction of new errors [13].
Furthermore, very few students who have trouble debugging
code are able to perform well in a course [1].

Although Fitzgerald et. al [7] found that construct-related
bugs (i.e. those that are due to misunderstanding or confu-
sion about the language) are easier to fix than those which
are language independent, syntax errors can still be major
obstacles that slow the progress of novice programmers. As
Kummerfeld and Kay [11] note, “Syntax error correction is
the first step in the debugging process. It is not possible to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ITiCSE’14, June 21–25, 2014, Uppsala, Sweden.
Copyright 2014 ACM 978-1-4503-2833-3/14/06 ...$15.00.
http://dx.doi.org/10.1145/2591708.2591748.

continue program development until the code compiles. This
means it is a crucial part of the error correction process.”

Denny et. al [5] explored the frequency with which stu-
dents encountered compilation errors when writing relatively
short fragments of code. In their study, although successful
solutions consisted of a median of only 8 lines of code, ap-
proximately 70% of students experienced four or more con-
secutive syntax errors even when the compiler output was
being shown to them. Students in the lowest performance
quartile of the course encountered particular difficulty with
syntax. In some cases, even after a significant amount of
time and effort, students were observed abandoning an exer-
cise when they were unable to write a compiling submission
and receive feedback on the logic of their code.

Our experience is that syntax errors can be a significant
barrier to student success. One example typifying the ex-
tent of this problem involves a student who spent close to 2
hours attempting to test whether the sum of two numbers
was even or odd. The student was trying to solve the fol-
lowing exercise using an online tool in which all compilation
attempts were captured:

Complete the isOddSum() method in Java. This
method should calculate the sum of the two in-
put values and return true if the sum is an odd
number, and false if the sum is an even num-
ber. For example, the sum of 10 and 20 is 30, an
even number, so the method call isOddSum(10,
20) should return false.

To begin the exercise, the student was provided with the
method signature as follows:

public boolean isOddSum(int a, int b)

The student made 31 distinct code submissions in their
attempt to solve this exercise. As shown in Figure 1, which
plots the time at which each submission was made, the stu-
dent appeared to work fairly conscientiously on this problem.

Their first submission, made at approximately 8:35pm, is
shown in Figure 2. There are many syntax errors in this
code: the cast is performed incorrectly, the assignment op-
erator is being used where an equality test is needed, semi-
colons are missing, the second keyword “if” has a capital
letter, the return variable “sum” is declared with the wrong
scope and is not the correct type as required by the method.

Over the next hour and a half the student made progress
towards correcting these errors, and the second to last sub-
mission they made, at approximately 10:15pm is shown in
Figure 3.

273

Figure 1: Time at which successive attempts were
made

if ((a=2∗int(a/2))&&(b=2∗(int b/2))) {
int sum=a+b

}
If (sum=2∗int(sum/2)) {

sum=0
}
return sum

Figure 2: Student X’s first attempt at the
isOddSum() exercise

Although logically this code is not correct (for example,
both branches of the condition assign the same value to the
return variable), only one syntax error remains (the type
of the return value does not match the return type of the
method) and as a result the compiler would generate a“Type
mismatch”error message. However, at this point the student
appears to give up on this approach and approximately 20
minutes later made their final submission to this exercise,
which was again both syntactically and logically incorrect,
as shown in Figure 4.

It is unfortunate that this student was not able to re-
solve their syntax errors, as this meant they never received
feedback on the logical correctness of their code. Providing
targeted help to get students over this problematic syntax
hurdle is the primary motivation behind our current work.

In this paper we report on an attempt to improve novice
debugging performance by providing enhanced syntax er-
ror messages, directly within the development environment,
that include a more verbose description of the error than the
standard Java compiler. Inspired by the work of others in
this area, our enhanced feedback also displays an example of
code that contains the same kind of error, and a correspond-
ing corrected version, along with details of how the example
code could be corrected. We evaluate the effectiveness of the
enhanced error messages with a controlled empirical study
involving first year students. Our main research question is:
“Does the enhanced feedback have any measurable impact
on how effectively students resolve syntax errors in their
code?”.

2. RELATED WORK
A number of other attempts to provide enhanced feedback

have been reported in the literature.
Kummerfeld and Kay [11] observe that students struggle

to correct syntax errors, and speculate that perhaps the in-

int sum = 0;

if (a==2∗(a/2)) {
if (b!=2∗(b/2)) {

sum = a+b;
}

} else {
if (b==2∗(b/2)) {

sum = a+b;
}

}

return sum;

Figure 3: Student X’s 30th, and penultimate, at-
tempt at the isOddSum() exercise

if (n%2==0) {
n = false;

} else {
n = true;

return n;

Figure 4: Student X’s final, and unsuccessful, at-
tempt at the isOddSum() exercise

comprehensibility of the compiler error messages contribute
to the difficulties. They provided students with a reference
guide that catalogues common compiler errors. Each er-
ror message is explained and illustrated with an example of
code that contains the error, and how the error could be
corrected. A qualitative study of debugging behaviour in-
volving students with access to the reference guide showed
that some students seemed to not understand the syntax
error until they looked at the example code. This suggests
concrete examples are important for teaching syntax errors.

Code Analyser for Pascal (CAP) was developed to pro-
vide automated feedback on program syntax, logic and style
errors [15]. The CAP tool performed static analysis of the
code and provided feedback about what was wrong, why it
was wrong and how to fix the problem. The feedback mes-
sages often included correct exemplar code for students to
model. Students who used the tool reported that they valued
CAP as a learning tool, and instructors reported that they
spent less time grading because CAP improved the quality
of student programs. However, the author observed that
some students did not read the error messages, and others
became dependent on the error messages for debugging.

Gauntlet [8] provides enhanced feedback by searching stu-
dent’s Java code for a number of commonly encountered
syntax and semantic errors and presenting them to students
in a more colloquial manner. After using the Gauntlet sys-
tem in classes at the United States Military Academy for
18 months, teaching staff noted that the work produced by
students was of a higher quality and that their workload
was reduced, as fewer students were visiting them in their
office hours looking for assistance. However, it became ap-
parent that Gauntlet was not addressing the most common
errors encountered by students because the errors supported
by Gauntlet were chosen by instructors based on personal
experience rather than empirical data [9].

274

Dy & Rodrigo [6] investigated automating the detection
of non-literal Java errors where following the compiler’s sug-
gested correction will create a different error. They analysed
data collected from student compilations to determine the
most common errors, and developed an error detector that
could automatically detect the kind of error based on the
compiler message and the source code. This detector could,
in principle, be used to provide enhanced feedback which
may help students to correct common errors, but the sys-
tem has not yet been deployed in a classroom context.

Toomey [16] modified the BlueJ environment to provide
more detailed error messages, along with examples of incor-
rect and correct code related to the error message. However,
this work has not (to our knowledge) been published or eval-
uated.

Carter & Blank [2] report on the design of an intelligent
tutoring system that provides enhanced error messages simi-
lar to those we present here. The intelligent tutoring system
is currently being developed and as yet no evaluation of the
enhanced error messages has been performed.

It should be noted that few of the previous reports have at-
tempted to rigorously evaluate the effectiveness of enhanced
error messages in classroom contexts, and none of them pro-
vide empirical data on the impact that the error messages
have on student debugging performance.

3. ENHANCING ERROR MESSAGES
We decided to implement an enhanced feedback system

to users of CodeWrite [4]. CodeWrite is a web-based tool
in which students complete a series of exercises that require
them to write the body of a method in Java. The header
of the method is always provided. Code is entered directly
in the browser and is compiled and run against a set of test
cases automatically. When code fails to compile, CodeWrite
passes the first two compiler-generated error messages back
to students. Limiting the number of errors shown to stu-
dents is consistent with other well-known Java teaching en-
vironments such as BlueJ [10], and is intended to help stu-
dents focus on a single error at a time.

The first step in building the enhanced feedback module
was to create a recognizer that parsed both the submitted
source code and the raw compiler messages, to categorize
the messages according to error type. We began by examin-
ing previous student submissions (from the Second Semester
2012) that failed to compile in order to find common pat-
terns in the code. The data set that we analysed to create
the recognizer had 12369 submissions containing syntax er-
rors.

The compiler error messages could be used to correctly
identify some of the errors (approximately 78%), but the
message alone was not sufficient to distinguish between some
other kinds of errors. For example, consider the following
two code fragments:

int x = 10;
int z = int x;

and

int x = 10;
int y = 20;
int z = Math.min(int x, int y);

In both cases, the compiler generates exactly the same
error message:

Syntax error on token "int", delete this token

Although both problems are similar, if we can determine
that the errant type appears prior to a parameter being
passed to a method, we are able to provide more contex-
tual feedback that includes a discussion of how to correctly
pass inputs to methods via parameters.

To categorize the errors that had ambiguous compiler mes-
sages, we performed a static analysis of the code using reg-
ular expressions to match commonly occurring patterns of
code that caused errors. This approach successfully iden-
tified another 14% of the total errors. We stopped adding
new error types to the recognizer after the recognizer was
capable of categorizing the errors present in 92% of the sub-
missions from the 2012 data set, and each remaining error
type was present in only a few submissions.

Once the error had been detected by the recognizer, we
extracted the line containing the error from the code so that
it could be highlighted in the feedback to aid the student
in locating the error. Our recognizer identifies 53 different
types of syntax errors, which we have classified into 9 differ-
ent categories. Table 1 summarises the different categories
of error and the number of errors included in each category.

Category N

Incorrect return statements 3
Misused or unmatched braces or parenthesis 10
Variable or type cannot be resolved 2
Type mismatches 2
Incorrect if statements 9
Incorrect method calls 8
Missing or unexpected character e.g. semicolon 6
Incorrect assignment/creation of variable/object 9
Other 4

Table 1: Number of errors in each category identi-
fied by the error recognition module

The feedback provided by the enhanced feedback mod-
ule typically contains the line that the error occurs on (as
extracted by the recognizer) and a detailed explanation of
what is most likely causing the syntax error. The enhanced
feedback also includes a table showing two code fragments
side by side, the first of which includes a simple syntax error
of the type that has been recognised and the other show-
ing the corrected version of the code with the syntax differ-
ences highlighted. The final column of this table provides
an explanation of the error in the first code fragment and
describes how it has been corrected in the second.

Consider the method definition below, in which the com-
pound conditional statement is missing surrounding paren-
theses.

public boolean validScore(int score)
{

if (score < 0) || (score > 100)
return false;

return true;
}

The raw error message produced by the compiler for this
code is shown in Figure 5. In contrast, the enhanced feed-
back is shown in Figure 6 and represents an example of an
error in the “Incorrect if statements” category listed in Table
1.

275

Figure 5: An example of an original error message

4. EVALUATION
To evaluate the effectiveness of the enhanced feedback,

we trialled the modified CodeWrite tool in an introductory
programming course (CS1) in the Summer Semester 2013 at
The University of Auckland. The Summer Semester course
covers the standard CS1 curriculum at an accelerated pace
with 6 lectures and 2 laboratories per week over a 6 week pe-
riod compared with the standard 3 lectures and 1 laboratory
per week over a 12 week period in other semesters.

Students were required to successfully answer 10 exer-
cises in CodeWrite for 1% of their final grade. This activity
spanned the second and third weeks of the six week course.
As the students were still in the first half of their course,
the exercises covered expressions, conditionals and methods
from the java.lang.String and java.lang.Math classes, but did
not cover arrays and loops.

In total, there were 90 students in the class, but only
83 contributed at least one submission. Students were ran-
domly allocated to a control group (N=42) that received raw
compiler feedback, or an intervention group (N = 41) that
received the enhanced feedback. Both groups completed the
same exercises.

We classify every student submission into one of the three
types shown in Table 2.

Type Explanation

P the submission compiles and all tests pass
F the submission compiles but fails at least one

of the tests
X the submission does not compile

Table 2: Types of student submissions

Once a student submits their code they receive instant
feedback on its correctness. In the case of an “F” submis-
sion, the student is shown the passing and, importantly, fail-
ing test cases. In the case of an “X” submission, they are
shown either the raw compiler error message or the enhanced
feedback produced by our module, depending on the group
to which they have been assigned.

Our main goal in this project was to improve the effec-
tiveness of student debugging. In particular, we wanted to
help those students who tended to repeatedly submit non-
compiling code, apparently unable to resolve the syntax er-
rors they encountered. To evaluate the enhanced feedback,
we investigated whether it had any impact on:

• the number of consecutive non-compiling submissions
made while attempting a given exercise,

• the total number of non-compiling submissions across
all exercises, and

• the number of attempts needed to resolve the most
common kinds of errors.

5. RESULTS

5.1 Did the enhanced feedback reduce the num-
ber of consecutive non-compiling submis-
sions?

As mentioned earlier, a previous study by Denny et. al [5]
revealed that the majority of students experienced a “syntax
issue”, in which code was unsuccessfully compiled at least
4 consecutive times before syntax errors were resolved. We
were particularly concerned about students (such as Student
X mentioned in the introduction) who were unable to correct
the syntax errors in their code using compiler messages.

We looked at the submissions made to each exercise sepa-
rately. For each student, we classified their sequence of sub-
missions to a given exercise using the categories described
in Table 2. For example, a sequence such as “XXXXFXXP”
indicates that a student submitted code that failed to com-
pile 4 times in a row, followed by code that compiled but
failed one or more test cases, followed by two submissions
of code that failed to compile before finally submitting code
that compiled and passed all the test cases.

For each exercise, we captured the degree to which a given
student was stuck with a “syntax issue” by recording the
longest sequence of consecutive “X” submissions the student
made to that exercise. We then compared these values for
all students in the control group with all students in the in-
tervention group using a two-sample t-test. Although data
items varied considerably, Shapiro-Wilk tests indicated nor-
mality of the data in most cases. For two of the exercises, in
which the data was particularly skewed with a few students
encountering a large number of consecutive syntax errors,
the data was log transformed prior to testing (results shown
in the log p column). Table 3 summarizes the results, giving
both the mean and standard deviation (in parentheses) for
each exercise. There were no significant differences between
groups.

Ex µcontrol(σ) µenhanced(σ) p log p

1 9.72 (12.5) 6.74 (9.82) 0.25
2 2.05 (2.20) 3.68 (3.83) 0.08
3 9.65 (11.8) 8.79 (10.1) 0.89
4 4.46 (5.01) 6.24 (8.38) 0.25
5 5.73 (8.08) 6.35 (7.99) 0.73
6 3.83 (5.77) 3.44 (5.61) 0.77
7 4.63 (5.43) 5.16 (7.44) 0.72
8 2.14 (6.69) 1.69 (2.89) 0.70
9 3.07 (7.26) 2.34 (3.79) 0.57
10 8.80 (20.7) 4.56 (7.92) 0.23

Table 3: The longest consecutive sequence of sub-
missions that failed to compile for the control group
(µcontrol) compared with the intervention group
(µenhanced) that received enhanced feedback.

5.2 Did the enhanced feedback reduce the to-
tal number of non-compiling submissions?

To determine if the enhanced error messages made a dif-
ference to the total number of non-compiling submissions,
we compared the mean number of submissions of each type
made by students in each group. Table 4 gives the total
number of submissions of each type for the control and in-

276

Figure 6: An example of an enhanced error message

tervention groups (means and standard deviations are in
parentheses).

Type Control Intervention

P 450 (µ, σ = 10.7, 3.36) 434 (µ, σ = 10.6, 4.00)
F 1892 (µ, σ = 45.0, 49.4) 1656 (µ, σ = 40.4, 52.8)
X 3343 (µ, σ = 79.6, 86.0) 2760 (µ, σ = 67.3, 68.8)

Table 4: Summary of submissions of each type for
the control group (raw error messages) and the in-
tervention group (enhanced error messages). To-
tals are in bold, means and standard deviations are
parenthesized

Although students viewing the enhanced error messages
made fewer non-compiling submissions overall, the variance
of both groups was high, and the difference between the
means was not significant (p = 0.9471).

Note that the number of submissions with logic errors
(i.e. submissions that compiled, but failed one of the tests)
was also lower among the intervention group, but the differ-
ence between means was not significant (p = 0.9941)

5.3 Did the enhanced feedback reduce the num-
ber of attempts needed to resolve the most
common kinds of errors?

For this question we have looked more in depth at the
three most common syntax errors as reported by Denny et al.
[3]. Each of these syntax errors are investigated separately:

1. Cannot resolve identifier
2. Type mismatch
3. Missing semicolon

A submission is said to have a syntax error of a particular
type when the error is first reported in response to compi-
lation. The error is said to have been resolved when the
syntax error is no longer reported to students in the feed-
back for that submission. We measured the average number
of compiles that it takes a student to resolve each type of
error. Having calculated the average number of compiles for
each student, we compare the mean of these averages for the
control group and the intervention group.

For each syntax error investigated, we found that the av-
erage number of compiles for students to resolve the error
varied greatly. In order to perform a two-sample t-test on
the data, we first performed a log transformation to make

the variances approximately equal. Table 5 summarizes the
results of the t-tests. In each case, a t-test for a difference
between the means of the logged data did not result in a sig-
nificant p-value, so we have no evidence that the enhanced
feedback affects the average number of compiles needed to
resolve any of these common syntax errors.

Syntax error µcon − µenh p

Cannot resolve identifier 0.15 0.2369
Type mismatch -0.15 0.2783
Missing semicolon -0.10 0.4449

Table 5: The difference between the means of the
control group (µcon) and the intervention group re-
ceiving enhanced feedback (µenh) for the average
number of compiles required to resolve each type
of error

6. DISCUSSION
Although we anticipated that the enhanced error messages

would help students to identify and correct errors, analysis of
the data shows no significant (or practical) effect. Each stu-
dent experienced approximately 70 submissions that failed
to compile, but the enhanced error messages did not appear
to reduce the number of “syntax issues” experienced, the to-
tal number of compilations required to solve all problems,
or to help resolve the most common errors encountered. In
essence, we found no empirical evidence to support the use
of enhanced error messages.

There are a number of reasons why the enhanced error
messages may not have helped students. It is possible that
the majority of errors may have been simple enough to solve
without the enhanced messages. For example, missing semi-
colons represent one of the more common student errors and
the corresponding error message generated by the compiler,
“Syntax error, insert ; to complete statement”, may provide
adequate information to most students without the need for
additional explanation. The cases for which the enhanced
messages are particularly useful may be too infrequent in
our data to yield significant results.

Another explanation for our findings is that students in
the intervention group did not pay much attention to the ad-
ditional information in the enhanced error messages. This is
consistent with findings by Kummerfeld and Kay [11], who

277

note that some students did not use their reference guide
that helped explain the likely cause of the errors encoun-
tered, and with the observation of Schorch who states“Some
students do not read the CAP error messages fully and thus
are probably not learning as much as we would like” [15].

The enhanced error messages we provided were more ver-
bose than the raw error messages and although they may
have provided an opportunity to learn about the likely cause
of the error, students may have been resistant to reading ad-
ditional detail beyond the simple compiler output, especially
when they encountered the same error multiple times.

A third possible explanation was that the enhanced feed-
back did not provide examples and explanations that stu-
dents could relate to their own code. The examples were
intended to illustrate the kind of situation that might cause
an error of the type encountered by a student, but it re-
lies on students understanding the idea and transferring the
knowledge to their own situation.

One possible threat to the validity of our findings is that
the raw compiler feedback shows up to two compiler errors,
while the enhanced feedback module displays only one er-
ror message to reduce the complexity for students. This
may allow some students to correct two errors at once while
using the raw compiler messages, or may possibly confuse
other students by presenting more than one error to correct.
However, it should be noted that previous research by Denny
et al. [3] found that most (approximately 70%) submissions
that failed to compile had only one syntax error.

In future, an observational study of how students are using
the enhanced feedback in practice may shed some light on
the reasons why our implementation was unsuccessful. We
note that further study of enhanced error feedback would be
valuable for systems (such as our own, and that of Cloud-
Coder [14]) intended to support short exercises and practice
in environments outside of typical supervised laboratories
where personal debugging support is limited.

7. CONCLUSIONS
Syntax errors are one of the biggest problems for students

learning to program. They slow students’ progress and pre-
vent them from getting feedback on the logic of their code.
As educators, we have a limited amount of time to spend
with each student so providing students with automated and
useful feedback about why they are getting syntax errors is
very important.

Although a number of researchers have previously inves-
tigated the use of enhanced compiler feedback, few provide
any quantifiable results. We built an enhanced feedback
module that recognises syntax errors and generates more de-
scriptive feedback on what caused the error. The enhanced
feedback module was evaluated using a controlled empirical
study in which the debugging behaviour of students receiv-
ing enhanced feedback was compared with that of students
receiving standard compiler feedback.

Despite our initial prediction that the enhanced feedback
would improve students’ performance, our results show that
there was no significant benefit for students that received
the enhanced feedback. This is a somewhat surprising re-
sult that warrants further investigation. It does, however,
signify that the development of teaching resources need to
take account of student behaviour and that innovations in-
tended to support student learning should be evaluated in
the context of real classroom situations.

8. REFERENCES
[1] M. Ahmadzadeh, D. Elliman, and C. Higgins. An

analysis of patterns of debugging among novice
computer science students. In Proc. ITiCSE ’05, pages
84–88, 2005. ACM.

[2] E. Carter and G. D. Blank. A tutoring system for
debugging: status report. J. Comput. Sci. Coll.,
28(3):46–52, Jan. 2013.

[3] P. Denny, A. Luxton-Reilly, and E. Tempero. All
syntax errors are not equal. In Proc. ITiCSE ’12,
pages 75–80, 2012. ACM.

[4] P. Denny, A. Luxton-Reilly, E. Tempero, and
J. Hendrickx. Codewrite: Supporting student-driven
practice of java. In Proc. SIGCSE ’11, pages 471–476,
2011. ACM.

[5] P. Denny, A. Luxton-Reilly, E. Tempero, and
J. Hendrickx. Understanding the syntax barrier for
novices. In Proc. ITiCSE ’11, pages 208–212, 2011.
ACM.

[6] T. Dy and M. M. Rodrigo. A detector for non-literal
java errors. In Koli Calling ’10, Koli, Finland, October
28–31, 2010. ACM.

[7] S. Fitzgerald, G. Lewandowski, R. McCauley,
L. Murphy, B. Simon, L. Thomas, and C. Zander.
Debugging: finding, fixing and flailing, a
multi-institutional study of novice debuggers.
Computer Science Education, 18(2):93–116, 2008.

[8] T. Flowers, C. Carver, and J. Jackson. Empowering
students and building confidence in novice
programmers through gauntlet. In Frontiers in
Education, 2004. FIE 2004. 34th Annual, pages
T3H/10–T3H/13 Vol. 1, 2004.

[9] J. Jackson, M. Cobb, and C. Carver. Identifying top
java errors for novice programmers. In Frontiers in
Education, 2005. FIE ’05. Proceedings 35th Annual
Conference, pages T4C–T4C, 2005.

[10] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg.
The bluej system and its pedagogy. Computer Science
Education, 13(4):249–268, 2003.

[11] S. K. Kummerfeld and J. Kay. The neglected battle
fields of syntax errors. In Proc. ACE ’03, vol 20, pages
105–111, Australia, 2003. ACS.

[12] R. McCauley, S. Fitzgerald, G. Lewandowski,
L. Murphy, B. Simon, L. Thomas, and C. Zander.
Debugging: a review of the literature from an
educational perspective. Computer Science Education,
18(2):67–92, 2008.

[13] L. Murphy, G. Lewandowski, R. McCauley, B. Simon,
L. Thomas, and C. Zander. Debugging: the good, the
bad, and the quirky – a qualitative analysis of novices’
strategies. In Proc. SIGCSE ’08, pages 163–167, 2008.
ACM.

[14] A. Papancea, J. Spacco, and D. Hovemeyer. An open
platform for managing short programming exercises.
In Proc. ICER ’13, pages 47–52, 2013. ACM.

[15] T. Schorsch. Cap: an automated self-assessment tool
to check pascal programs for syntax, logic and style
errors. In Proc. SIGCSE ’95, pages 168–172, 1995.
ACM.

[16] W. Toomey. Bluej with modified error subsystem.
http://minnie.tuhs.org/Programs/BlueJErrors, 2011.

278

