
01
0

YEAR

20
 7

32

Software Tools
Decentralized Version Control

C
O

M
P

S
C

I Decentralized Version Control

ea
la

nd Part II - Lecture 6

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

1

Today’s Outline
01
0

y

YEAR

20
 7

32

• Version Control Recap
D t li d V i C t l

C
O

M
P

S
C

I • Decentralized Version Control
• git

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

2

01
0

YEAR

20
 7

32
C

O
M

P
S

C
I

Version Control Recap

ea
la

nd

Version Control Recap

kl
an

d
| N

ew
 Z

e

The only constant is change.
(Heraclitus)

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

3

Version Control System
01
0

y
Network

YEAR

20
 7

32 Repository

Working
Copy

C
O

M
P

S
C

I Repository

Version 4
Version 5Working

Copy

ea
la

nd

Version 1
Version 2

Version 3
Version 4py

Working

kl
an

d
| N

ew
 Z

e Version 1Copy

ve
rs

ity
 o

f A
uc

k

• Developers work on their local working copies
• Developers synchronize their working copy with the repository
• Repository usually uses delta encoding for the versions

Th
e

U
ni

v

4

• Repository usually uses delta encoding for the versions
• Two ways to avoid conflicts: reserved vs. unreserved checkouts

Branches & Tags
01
0

g
Branches: different copies of a project which are developed

i lt l “ lf i t i d li f d l t”
YEAR

20
 7

32

simultaneously; “self-maintained lines of development”
(/branches)
– One main branch (/trunk)

C
O

M
P

S
C

I

– Maintenance branches: used for maintaining old versions
which are still widely used (e.g. commercial OS)

– Experimental branches: used for trying out new features

ea
la

nd

Experimental branches used for try ng out new features
before merging them into the trunk

– Personal developer branches: for people trying out their
own ideas

kl
an

d
| N

ew
 Z

e own ideas
Tags: particular marked versions of the project (/tags)

– Can be used to refer to and recreate an old version
A t ll l lik f th j t t ti l i t

ve
rs

ity
 o

f A
uc

k – Actually also like a copy of the project at a particluar point
in time

– Difference to branches: usually not changed any more

Th
e

U
ni

v

5

Version Control
Best Practices

01
0

Best Practices
1. Complete one change at a time and commit it

YEAR

20
 7

32

– If you committing several changes together you cannot
undo/redo them individually

– If you don’t commit and your hard disk crashes

C
O

M
P

S
C

I – If you don t commit and your hard disk crashes…
2. Only commit changes that preserve system integrity

– No “breaking changes” that make compilation or tests fail

ea
la

nd

g g p
3. Commit only source files (e.g. not .class files)
4. Write a log entry for each change

kl
an

d
| N

ew
 Z

e

– What has been changed and why
5. Communicate with the other developers

– See who else is working on a part before changing it

ve
rs

ity
 o

f A
uc

k – See who else is working on a part before changing it
– Discuss and agree on a design
– Follow the project guidelines & specifications

Th
e

U
ni

v

6

p j g p

01
0

YEAR

20
 7

32
C

O
M

P
S

C
I

Decentralized
V i C t l

ea
la

nd

Version Control

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

7

Decentralized
V rsi n C ntr l

01
0

Version Control
Every developer has their own local repository

YEAR

20
 7

32

(a.k.a. “distributed version control”)
1. Developers work on their working copy

C
O

M
P

S
C

I

2. Developers commit changes of the working copy to
their own local repository first

ea
la

nd

3. Changes can be exchanged between repositories
(“pushed” and “pulled”)

kl
an

d
| N

ew
 Z

e

Local
Repository

Working
Copy

ve
rs

ity
 o

f A
uc

k

Network

Th
e

U
ni

v

8
Local

Repository
Working

Copy

Branches
01
0 Branches

YEAR

20
 7

32

• Create a branch by cloning existing branch
• I.e. get the content and the change history

C
O

M
P

S
C

I

g g y
• The new branch and the original branch share a

common ancestor version and can be merged later

ea
la

nd

g
• Main branch of a project called “trunk”

Remote branches

kl
an

d
| N

ew
 Z

e Remote branches
• Branches that are in some other repository

ve
rs

ity
 o

f A
uc

k

Tracking branches
• Branches that were created by cloning a remote

Th
e

U
ni

v

y g
branch locally

9

Push and Pull
01
0

Push
• Once developers have committed changes on their

YEAR

20
 7

32

local repository, they can push them to another repo
• Commits are pushed from local branches (“tracking branches”)

and merged into the corresponding remote branches

C
O

M
P

S
C

I and merged into the corresponding remote branches
• Like “commit” from one repo to another
Pull

ea
la

nd

• Latest commits are pulled from remote branches
and merged into the corresponding local branches
(into the “tracking branches”)

kl
an

d
| N

ew
 Z

e (into the tracking branches)
• Like “update” from one repo to another

LocalWorkingA

ve
rs

ity
 o

f A
uc

k Local
Repository

Network

Working
CopyA

Th
e

U
ni

v

10Local
Repository

Working
Copy

B

Decentralized Version
C ntr l Adv nt s

01
0

Control Advantages
• Versioning can be done locally

YEAR

20
 7

32

g y
(does not depend on central repository)
1. Good if you don’t have Internet connectivity

C
O

M
P

S
C

I

2. Good if you don’t have access to the main repo
3. Good for bigger changes that involve many steps

ea
la

nd

gg g y p
• Easier to branch a repository (i.e. create a clone)

keeping all its history (its previous versions)

kl
an

d
| N

ew
 Z

e

1. You can develop your own branch
2. Because history of a branch is kept,

ve
rs

ity
 o

f A
uc

k

changes can be easier merged back into
the original repository

3 Ch l b d i

Th
e

U
ni

v 3. Changes can also be merged into any
other branch 11

01
0

YEAR

20
 7

32
C

O
M

P
S

C
I

git

ea
la

nd

git

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

12

git
01
0

g

• Created by Linus Torvalds
YEAR

20
 7

32

y
• Open-source project, started around 2005
• Used for many open-source projects

C
O

M
P

S
C

I

f m y p p j

Some features:

ea
la

nd

Some features
• Decentralized with fast branching and merging
• Versions are identified by hash values

kl
an

d
| N

ew
 Z

e Versions are identified by hash values,
e.g. 5e90f225c652859daf82d272728e553a9be75f1e

• Lots of things that can be changed by users,

ve
rs

ity
 o

f A
uc

k g g y ,
e.g. history can be changed a-posteriori

Th
e

U
ni

v

13

Installing msysgit on
Wind s

01
0 • Download it from here:

Windows

YEAR

20
 7

32

http://msysgit.googlecode.com/

• Run the installer

C
O

M
P

S
C

I

– Choose “Run git and included Unix tools from
command line”

h “ ”

ea
la

nd

– Choose “OpenSSH”
– Choose “Commit line endings as they are”

kl
an

d
| N

ew
 Z

e

• Installed on lab image
• Alternative with file explorer

i t ti T t i Git

ve
rs

ity
 o

f A
uc

k integration: TortoiseGit

Th
e

U
ni

v

Creating Your Own Repo
01
0

A git repo is a folder

g p

YEAR

20
 7

32

A git repo is a folder
◦ All the repo data is in a subfolder .git
◦ All the other files & folders are your working copy

C
O

M
P

S
C

I All the other files & folders are your working copy
Two possibilities to create repo
1. Create empty folder and call git init in it

ea
la

nd

1. Create empty folder and call git init in it
2. Clone existing repository, e.g.

git clone UPI@server:/var/git/repo

kl
an

d
| N

ew
 Z

e

e.g. git clone
clut002@genoupe.se.auckland.ac.nz:/var/git/pdstore

Or use git GUI (e g through context menu)

ve
rs

ity
 o

f A
uc

k Or use git GUI (e.g. through context menu)

Th
e

U
ni

v

Adding and Committing
Fil s

01
0 • Like in SVN files & folders have to be marked for

Files

YEAR

20
 7

32

addition to the repo first:
git add fileOrFolder

C
O

M
P

S
C

I • Committing added or changed files:
git commit –a

 it ll h d/ dd d fil

ea
la

nd

– -a means: commit all changed/added files
– Git will ask for a log message

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

Branches
01
0

• In a repo you can list available local branches:
YEAR

20
 7

32

• In a repo, you can list available local branches:
git branch

• List local and also remote branches:

C
O

M
P

S
C

I List local and also remote branches:
git branch -a

• Make a branch appear in the repo folder:

ea
la

nd

Make a branch appear n the repo folder
git checkout branchname

• Create new branch from an existing branch:

kl
an

d
| N

ew
 Z

e g
git branch newbranch existingbranch

• Delete a branch:

ve
rs

ity
 o

f A
uc

k

git branch –d branchname

• All operations also available in the git GUI

Th
e

U
ni

v

Branches Cont.
01
0

• The default branch is called master
YEAR

20
 7

32

• The default branch is called master
• There are different types of branches:

Local branches (e g master)

C
O

M
P

S
C

I – Local branches (e.g. master)
– Remote branches (e.g. origin/master)

Tags

ea
la

nd

– Tags

Y l s k i l l b h

kl
an

d
| N

ew
 Z

e • You always work in a local branch
• You never work in remote branches

(they are somewhere else)

ve
rs

ity
 o

f A
uc

k (they are somewhere else)
• To work with a remote branch, you need to create a

corresponding tracking branch locally

Th
e

U
ni

v corresponding tracking branch locally

Tracking Branches
01
0 • You always work in a local branch

g

YEAR

20
 7

32

y
• You never work in a remote branch
• To push/pull to/from a remote branch, your local

C
O

M
P

S
C

I

p p f m m , y
branch should be a tracking branch

ea
la

nd

• Tracking branch:
a local branch that was created from a remote

kl
an

d
| N

ew
 Z

e

branch, e.g.
git branch --track branchx origin/branchx

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

Pushing, Pulling and
M r in

01
0 • Merge latest changes from remote branch to local

Merging

YEAR

20
 7

32

g g
tracking branch (like update from other server):
git pull

C
O

M
P

S
C

I • Merge latest changes from local tracking branch to
remote branch (like commit to other server):
git push

ea
la

nd

git push

• Merge a branch source into the current working
copy:

kl
an

d
| N

ew
 Z

e copy:
git merge source

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

Example Session
01
0

git clone clut002@genoupe.se.auckland.ac.nz:/var/git/pdstore

p

YEAR

20
 7

32

git clone clut002@genoupe.se.auckland.ac.nz:/var/git/pdstore
cd pdstore // clone the repo and go into it
echo "hello" > newfile.txt

//

C
O

M
P

S
C

I git add newfile.txt // mark the new file for addition
git commit –a

ea
la

nd

git branch --track AbhiRamy origin/AbhiRamy // new tracking
// branch

git checkout AbhiRamy // checkout tracking branch

kl
an

d
| N

ew
 Z

e git checkout AbhiRamy // checkout tracking branch
git pull // update tracking branch

//

ve
rs

ity
 o

f A
uc

k git merge master // merge changes of master to here
git push // send changes to remote branch

Th
e

U
ni

v

01
0

YEAR

20
 7

32
C

O
M

P
S

C
I

Summary

ea
la

nd

Summary

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

22

Today’s Summary
01
0

y y

• In decentralized version control systems every user
YEAR

20
 7

32

y y
has a full repository with several versions (not just a
working copy)

C
O

M
P

S
C

I • Changes are committed to local repository first
• Changes can be pushed from a local tracking branch

 b h

ea
la

nd

to a remote branch
• Changes can be pulled from a remote branch to a local

t ki b h

kl
an

d
| N

ew
 Z

e tracking branch

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

23

Quiz
01
0

Q
1. What is the main difference between centralized

and decentralized version control?
YEAR

20
 7

32

and decentralized version control?
2. What does pull do?
3 Name three advantages of decentralized version

C
O

M
P

S
C

I 3. Name three advantages of decentralized version
control

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

24

