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Today’s Outline
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• Version Control Recap
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Version Control Recap
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Version Control Recap
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The only constant is change.
(Heraclitus)
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Version Control System
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Version 4
Version 5Working

Copy
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Version 1
Version 2

Version 3
Version 4py

Working
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• Developers work on their local working copies
• Developers synchronize their working copy with the repository
• Repository usually uses delta encoding for the versions
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• Repository usually uses delta encoding for the versions
• Two ways to avoid conflicts: reserved vs. unreserved checkouts



Branches & Tags
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Branches: different copies of a project which are developed 

i lt l  “ lf i t i d li  f d l t” 
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simultaneously; “self-maintained lines of development” 
(/branches)
– One main branch (/trunk)
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– Maintenance branches: used for maintaining old versions 
which are still widely used (e.g. commercial OS)

– Experimental branches: used for trying out new features 

ea
la

nd

Experimental branches  used for try ng out new features 
before merging them into the trunk

– Personal developer branches: for people trying out their 
own ideas
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Tags: particular marked versions of the project (/tags)

– Can be used to refer to and recreate an old version
A t ll  l  lik    f th  j t t  ti l  i t 
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in time

– Difference to branches: usually not changed any more
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Version Control
Best Practices
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Best Practices
1. Complete one change at a time and commit it
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– If you committing several changes together you cannot 
undo/redo them individually

– If you don’t commit and your hard disk crashes
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I – If you don t commit and your hard disk crashes…
2. Only commit changes that preserve system integrity

– No “breaking changes” that make compilation or tests fail
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g g p
3. Commit only source files (e.g. not .class files)
4. Write a log entry for each change
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– What has been changed and why
5. Communicate with the other developers

– See who else is working on a part before changing it
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k – See who else is working on a part before changing it
– Discuss and agree on a design
– Follow the project guidelines & specifications
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Decentralized
V i  C t l
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Decentralized
V rsi n C ntr l
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Version Control
Every developer has their own local repository
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(a.k.a. “distributed version control”)
1. Developers work on their working copy
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2. Developers commit changes of the working copy to 
their own local repository first
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3. Changes can be exchanged between repositories 
(“pushed” and “pulled”)
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Branches
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0 Branches
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• Create a branch by cloning existing branch
• I.e. get the content and the change history
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• The new branch and the original branch share a 

common ancestor version and can be merged later
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• Main branch of a project called “trunk”

Remote branches
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• Branches that are in some other repository
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Tracking branches
• Branches that were created by cloning a remote 
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Push and Pull
01
0

Push
• Once developers have committed changes on their
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local repository, they can push them to another repo
• Commits are pushed from local branches (“tracking branches”) 

and merged into the corresponding remote branches
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I and merged into the corresponding remote branches
• Like “commit” from one repo to another
Pull
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• Latest commits are pulled from remote branches
and merged into the corresponding local branches
(into the “tracking branches”)
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• Like “update” from one repo to another

LocalWorkingA
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Decentralized Version 
C ntr l Adv nt s
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Control Advantages
• Versioning can be done locally
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(does not depend on central repository)
1. Good if you don’t have Internet connectivity
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2. Good if you don’t have access to the main repo
3. Good for bigger changes that involve many steps
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• Easier to branch a repository (i.e. create a clone) 

keeping all its history (its previous versions)
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1. You can develop your own branch
2. Because history of a branch is kept, 
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changes can be easier merged back into 
the original repository

3 Ch   l  b  d i   
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git
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• Created by Linus Torvalds
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• Open-source project, started around 2005
• Used for many open-source projects
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Some features:
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Some features
• Decentralized with fast branching and merging
• Versions are identified by hash values
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e.g. 5e90f225c652859daf82d272728e553a9be75f1e

• Lots of things that can be changed by users, 
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e.g. history can be changed a-posteriori
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Installing msysgit on 
Wind s
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0 • Download it from here:

Windows
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http://msysgit.googlecode.com/

• Run the installer
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– Choose “Run git and included Unix tools from 
command line”

h  “ ”
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– Choose “OpenSSH”
– Choose “Commit line endings as they are”
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• Installed on lab image
• Alternative with file explorer

i t ti  T t i Git
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Creating Your Own Repo
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A git repo is a folder
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A git repo is a folder
◦ All the repo data is in a subfolder .git
◦ All the other files & folders are your working copy

C
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I All the other files & folders are your working copy
Two possibilities to create repo
1. Create empty folder and call git init in it
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1. Create empty folder and call git init in it
2. Clone existing repository, e.g.

git clone UPI@server:/var/git/repo
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e.g. git clone 
clut002@genoupe.se.auckland.ac.nz:/var/git/pdstore

Or use git GUI (e g  through context menu)
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Adding and Committing 
Fil s
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0 • Like in SVN files & folders have to be marked for 

Files
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addition to the repo first:
git add fileOrFolder
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I • Committing added or changed files:
git commit –a

 it ll h d/ dd d fil  
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– -a means: commit all changed/added files 
– Git will ask for a log message
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Branches
01
0

• In a repo  you can list available local branches: 
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• In a repo, you can list available local branches: 
git branch

• List local and also remote branches: 

C
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I List local and also remote branches: 
git branch -a

• Make a branch appear in the repo folder: 
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Make a branch appear n the repo folder  
git checkout branchname

• Create new branch from an existing branch:
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git branch newbranch existingbranch

• Delete a branch:
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git branch –d branchname

• All operations also available in the git GUI
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Branches Cont.
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• The default branch is called master
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• The default branch is called master
• There are different types of branches:

Local branches (e g  master)
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I – Local branches (e.g. master)
– Remote branches (e.g. origin/master)

Tags
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– Tags

Y  l s k i   l l b h
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• You never work in remote branches

(they are somewhere else)
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• To work with a remote branch, you need to create a 

corresponding tracking branch locally
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Tracking Branches
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0 • You always work in a local branch
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• You never work in a remote branch
• To push/pull to/from a remote branch, your local 

C
O

M
P

S
C

I 

p p f m m , y
branch should be a tracking branch
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• Tracking branch:
a local branch that was created from a remote 
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branch, e.g.
git branch --track branchx origin/branchx
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Pushing, Pulling and 
M r in
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0 • Merge latest changes from remote branch to local 

Merging
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g g
tracking branch (like update from other server):
git pull
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I • Merge latest changes from local tracking branch to 
remote branch (like commit to other server):
git push
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git push

• Merge a branch source into the current working 
copy:
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git merge source

ve
rs

ity
 o

f A
uc

k
Th

e 
U

ni
v



Example Session
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git clone clut002@genoupe.se.auckland.ac.nz:/var/git/pdstore
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git clone clut002@genoupe.se.auckland.ac.nz:/var/git/pdstore
cd pdstore // clone the repo and go into it
echo "hello" > newfile.txt

//
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I git add newfile.txt // mark the new file for addition
git commit –a
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git branch --track AbhiRamy origin/AbhiRamy // new tracking 
// branch

git checkout AbhiRamy // checkout tracking branch
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git pull // update tracking branch

//
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k git merge master // merge changes of master to here
git push // send changes to remote branch
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Summary
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Today’s Summary
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• In decentralized version control systems every user 
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y y
has a full repository with several versions (not just a 
working copy)
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I • Changes are committed to local repository first
• Changes can be pushed from a local tracking branch 
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to a remote branch
• Changes can be pulled from a remote branch to a local 
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Quiz
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1. What is the main difference between centralized 

and decentralized version control?
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and decentralized version control?
2. What does pull do?
3 Name three advantages of decentralized version 
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I 3. Name three advantages of decentralized version 
control
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