
00
9

YEAR

20
 7

32

Software Tools
Software Development Processes

C
O

M
P

S
C

I Software Development Processes

ea
la

nd Part II - Lecture 2

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

1

Today’s Outline
00
9

y

YEAR

20
 7

32

• Introduction to Software Development Processes
Xt P i (XP)

C
O

M
P

S
C

I • eXtreme Programming (XP)
• Rational Unified Process (RUP)

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

2

00
9

YEAR

20
 7

32
C

O
M

P
S

C
I

Software Development
P

ea
la

nd

Processes

kl
an

d
| N

ew
 Z

e

He who fails to plan,

ve
rs

ity
 o

f A
uc

k p
plans to fail
(Proverb)

Th
e

U
ni

v

3

Software Development
Pr c ss

00
9

Process
Generic plan for a software project

YEAR

20
 7

32

p p j

1. What has to be done? (-> tasks/activities/steps)

C
O

M
P

S
C

I 2. Why do a task? (-> outcomes, produced artifacts)
3. When should it be done? (-> schedule)
4 Wh d i (l l ibili i)

ea
la

nd

4. Who does it? (-> people, roles, responsibilities)
5. How should it be done? (-> methods, standards, tools)

kl
an

d
| N

ew
 Z

e

• Many different processes exist
• No single process suitable for every project

ve
rs

ity
 o

f A
uc

k • No single process suitable for every project
(no “one size fits all”)

• Using a process can improve the quality of the product

Th
e

U
ni

v

4

s ng a proc ss can mpro th qua ty of th pro uct

Adaptive vs. Predictive
Processes

00
9

Processes
Adaptive Predictive

YEAR

20
 7

32

• Lightweight, ‘agile’
• Control by feedback

• Heavyweight, ‘traditional’
• Control by planning

Adaptive Predictive

C
O

M
P

S
C

I Control by feedback
• Many short iterations (weeks)
• Small scale (<10 developers)
• Face-to-face communication

Control by planning
• Few long iterations (months)
• Large scale (>30 developers)
• Written documents

ea
la

nd

Face to face communication
• Code- & people-centric
• Egalitarian

Written documents
• Rule-centric
• Authoritarian

kl
an

d
| N

ew
 Z

e

• Problems:
– Long-term results hardly

predictable
N d d j

• Problems:
– Inflexible with changing

requirements
Hi h i i d i

ve
rs

ity
 o

f A
uc

k – Needs good project
foundation

– Cowboy-coding chaos

– High integration and testing
effort

– ‘Control freak’ bureaucracy

Th
e

U
ni

v

5• E.g. XP • E.g. waterfall, RUP

Agile Software Development
00
9

g p

• Evolved in mid 1990s as part of a reaction against
YEAR

20
 7

32

p g
heavyweight methods

• Many short iterations (weeks), ‘prototyping’:

C
O

M
P

S
C

I

Analysis Design Implementation Testing Prototype
Iteration
#1

ea
la

nd

Analysis Design Implementation Testing Prototype

Analysis Design Implementation Testing Prototype

#1

#2

kl
an

d
| N

ew
 Z

e

Analysis Design Implementation Testing Prototype#3

ve
rs

ity
 o

f A
uc

k

• Control by feedback: reevaluation & revision of
…

Th
e

U
ni

v

6

ontro y f ac r a uat on & r s on of
project after each iteration

00
9

YEAR

20
 7

32
C

O
M

P
S

C
I

eXtreme Programming (XP)

ea
la

nd

eXtreme Programming (XP)

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

7

XP Overview
00
9 „Instead of cowboy coders we have software

YEAR

20
 7

32

y
sheriffs; working together as a team, quick on the
draw, armed with a few rules and practices that are
li ht i d ff ti “

C
O

M
P

S
C

I light, concise, and effective.“
(James D. Wells, extremeprogramming.org)

ea
la

nd • XP=eXtreme Programming:
Nomen est omen a code centered approach

kl
an

d
| N

ew
 Z

e Nomen est omen, a code-centered approach
• XP culture: not just about getting work done
• Set of day to day best practices for developers and

ve
rs

ity
 o

f A
uc

k • Set of day-to-day best practices for developers and
managers that encourage and embody certain values

• 5 values 12 practices/rules

Th
e

U
ni

v

8

5 values, 12 practices/rules

The 5 XP Values
00
9

1. Communication
– Teamwork: consistent shared view of the system

O ffi i d l
YEAR

20
 7

32

– Open office environment: developers, managers, customers
– Verbal, informal, face-to-face conversation

2. Feedback Cost of

C
O

M
P

S
C

I – Find required changes ASAP to avoid cost
– From the customer, through early

prototypes & communication

Cost of
change

ea
la

nd

– Testing, code review, team estimates
3. Simplicity

– Build the simplest thing that works for today

Point of time
within project

kl
an

d
| N

ew
 Z

e p g f y
– No work that might become unnecessary tomorrow
– Simple design easier to communicate

4 Courage

ve
rs

ity
 o

f A
uc

k 4. Courage
– To change and to scrap, “embrace change”
– Better change now (cheaper)

Never ever give up!

Th
e

U
ni

v

9

– Never ever give up!
5. Respect your teammates and your work

The 12 XP Practices
00
9 Fine scale feedback

YEAR

20
 7

32

1. Pair Programming
Programming in teams of two: driver and navigator

2 Planning Game: method for project planning with the customer

C
O

M
P

S
C

I 2. Planning Game: method for project planning with the customer
3. Test Driven Development

– First write test cases, then program code
F h d f i d

ea
la

nd

– For each defect, introduce new test case
4. Whole Team: teamwork of customer, developer/manager

kl
an

d
| N

ew
 Z

e

Shared understanding
5. Use an agreed Coding Standard
6 C ll ti C d O hi

ve
rs

ity
 o

f A
uc

k 6. Collective Code Ownership
Everybody is responsible for and can change all code

7. Simple Design

Th
e

U
ni

v

10
8. System Metaphor

Consistent, intuitive naming of program parts

The 12 XP Practices
00
9 Continuous process

YEAR

20
 7

32

p
9. Continuous Integration

– Work with latest version

C
O

M
P

S
C

I – Integrate local changes ASAP
10. Refactoring

 d i h ibl

ea
la

nd

– Improve design whenever possible
– Remove clutter & unnecessary complexity

11 S ll R l s s

kl
an

d
| N

ew
 Z

e 11. Small Releases

Programmer welfare

ve
rs

ity
 o

f A
uc

k Programmer welfare
12. Sustainable Pace

No Overtime – change timing or scope instead

Th
e

U
ni

v

11

No O rt m chang t m ng or scop nst a

Some XP Terminology
00
9

gy

• User story
YEAR

20
 7

32

y
– Things the system needs to do for the users
– Written on a card in a few sentences

Should take 1 3 weeks to implement

C
O

M
P

S
C

I – Should take 1-3 weeks to implement
• Release: running system that implements important user stories
• Spike

ea
la

nd

– Small proof-of-concept prototype
– Explores the feasibility of an implementation approach

• Iteration

kl
an

d
| N

ew
 Z

e Iteration
– Phase of implementation, 1-3 weeks long
– Consists of tasks, each of which is 1-3 days long

ve
rs

ity
 o

f A
uc

k

• Project velocity: used to estimate progress
– Either #stories / time (time)
– Or time / #stories (scope)

Th
e

U
ni

v

12

Or time / #stories (scope)

XP Workflow Overview
00
9

U
YEAR

20
 7

32

User
Stories

DefectsProject velocity

C
O

M
P

S
C

I

Release
Planning TestsIteration

ea
la

nd

N tN

kl
an

d
| N

ew
 Z

e

Small
Release

Next
Iteration

New
User Story

ve
rs

ity
 o

f A
uc

k

Uncertain
Estimates

Confident
Estimates = is followed by

Th
e

U
ni

v

13
Spike = result goes into

XP Criticism
00
9 • Relies on on-site customer

YEAR

20
 7

32

– Single point-of-failure
(-> source of stress, lack of technical expertise)

– May not be representative for all users (> user conflicts)

C
O

M
P

S
C

I – May not be representative for all users (-> user conflicts)
• Unstable Requirements because of informal change requests

instead of formal change management (-> rework, scope creep)

ea
la

nd

• Lack of documentation, e.g. tests instead of requirements
documents

• Incremental design on the fly (> more redesign effort)

kl
an

d
| N

ew
 Z

e • Incremental design on-the-fly (-> more redesign effort)
• Pair-programming required
• Interdependency of practices requires drastic organizational

ve
rs

ity
 o

f A
uc

k p y p q g
changes

• Scalability? Distributed development?

Th
e

U
ni

v

14

00
9

YEAR

20
 7

32
C

O
M

P
S

C
I

The Rational Unified

ea
la

nd

Process (RUP)

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

15

RUP Overview
00
9 • Extensible, customizable process framework

YEAR

20
 7

32

, p
• Created by the Rational Software Corporation in the

1980s and 1990s, which was sold to IBM in 2003

C
O

M
P

S
C

I

• Now software process product of IBM
• IBM sells RUP tools, e.g. Rational Method Composer

ea
la

nd

g p
for authoring, configuring and publishing processes

• Business-driven development

kl
an

d
| N

ew
 Z

e

• Tied to UML
• Heavyweight, i.e. of considerable size, but recent

ve
rs

ity
 o

f A
uc

k

changes influenced by lightweight, agile processes

Th
e

U
ni

v

16

6 RUP Best Practices:
The RUP ABC

00
9

The RUP ABC
Adapt the process

YEAR

20
 7

32

p p
– right-size the process to project needs
– adapt process ceremony to lifecycle phase
– continuously improve the process

C
O

M
P

S
C

I – continuously improve the process
– balance project plans and associated estimates with the

uncertainty of a project

B

ea
la

nd

Balance competing stakeholder priorities
– understand and prioritize business and stakeholder needs

kl
an

d
| N

ew
 Z

e – center development activities around stakeholder needs
– balance asset reuse with stakeholder needs

C

ve
rs

ity
 o

f A
uc

k Collaborate across teams
– motivate individuals on the team to perform at their best
– encourage cross-functional collaboration

Th
e

U
ni

v

17

– encourage cross-functional collaboration
– provide effective collaborative environments

The RUP ABC Cont’d
00
9 Demonstrate value iteratively

YEAR

20
 7

32

– incremental value to enable early and continuous feedback
– adapt your plans
– embrace and manage change

C
O

M
P

S
C

I – embrace and manage change
– drive out key risks early

El h l l f b i

ea
la

nd

Elevate the level of abstraction
– reusing existing assets
– leverage higher-level tools frameworks and languages

kl
an

d
| N

ew
 Z

e leverage higher level tools, frameworks, and languages
– focus on architecture

F s ti sl lit

ve
rs

ity
 o

f A
uc

k Focus continuously on quality
– the entire team owns quality
– test early and continuously

Th
e

U
ni

v

18

test early and continuously
– incrementally build test automation

RUP Lifecycle
00
9

y
• 4 phases divided into a series of timeboxed iterations
• Each iteration results in an increment (release)

YEAR

20
 7

32

• Each iteration results in an increment (release)
• Disciplines (like traditional phases) which happen with varying

emphasis in every phase

C
O

M
P

S
C

I

1. Inception Phase
– Justification or business case

ea
la

nd

– Project scope, use cases, key requirements
– Candidate architectures

Risks preliminary project schedule cost estimate

kl
an

d
| N

ew
 Z

e – Risks, preliminary project schedule, cost estimate
2. Elaboration Phase

– Requirements, risk factors

ve
rs

ity
 o

f A
uc

k q
– System architecture (Executable Architecture Baseline)
– Construction plan (including cost and schedule estimates)

3 Construction Phase: building the rest of the system (longest)

Th
e

U
ni

v

19

3. Construction Phase: building the rest of the system (longest)
4. Transition Phase: deployment, feedback, user training

RUP Lifecycle
00
9

y

YEAR

20
 7

32
C

O
M

P
S

C
I

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

202006 Giles Lewis

RUP Criticism
00
9 • “High ceremony methodology”

Bur ucr tic: pr c ss f r v r thin
YEAR

20
 7

32

• Bureaucratic: process for everything
• Slow: must follow process to comply
• Excessive overhead:

C
O

M
P

S
C

I • Excessive overhead:
rationale, justification, documentation, reporting,
meetings, permission

ea
la

nd

• Very customizable: can be everything and nothing

kl
an

d
| N

ew
 Z

e

But:
• RUP can be used in traditional waterfall style or in

agile manner

ve
rs

ity
 o

f A
uc

k agile manner
• Example: dX process

– Fully compliant instance of RUP

Th
e

U
ni

v

21

Fully compliant instance of RUP
– Identical to XP

00
9

YEAR

20
 7

32
C

O
M

P
S

C
I

Summary

ea
la

nd

Summary

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

22

Summary
00
9

y

• Adaptive vs. predictive Processes
YEAR

20
 7

32

p p
• eXtreme Programming (XP)

– Agile process focused on programming as a team

C
O

M
P

S
C

I

g p f p g mm g m
– Short iterations, as much feed back as possible
– Best practices include collective code ownership,

ea
la

nd

Best practices include collective code ownership,
refactoring, pair programming

• Rational Unified Process (RUP)

kl
an

d
| N

ew
 Z

e ()
– Heavyweight process framework
– Phases divided into iterations,

ve
rs

ity
 o

f A
uc

k ,
several disciplines happening simultaneously

– Best practices include risk & change management,

Th
e

U
ni

v

23

p g g
use of tools, models & components

Quiz
00
9

Q

1. Describe three differences between adaptive and
YEAR

20
 7

32

p
predictive processes.

C
O

M
P

S
C

I

2. Name five of the XP best practices.

ea
la

nd

3. What are the characteristics of the RUP lifecycle?

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

24

