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• Introduction to Software Development Processes
Xt P i  (XP)
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I • eXtreme Programming (XP)
• Rational Unified Process (RUP)
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Software Development 
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He who fails to plan, 
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plans to fail
(Proverb)
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Software Development 
Pr c ss
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Process
Generic plan for a software project
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1. What has to be done? (-> tasks/activities/steps)

C
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I 2. Why do a task? (-> outcomes, produced artifacts)
3. When should it be done? (-> schedule)
4 Wh d  i  (  l  l  ibili i )

ea
la

nd

4. Who does it? (-> people, roles, responsibilities)
5. How should it be done? (-> methods, standards, tools)
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• Many different processes exist
• No single process suitable for every project 
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k • No single process suitable for every project 
(no “one size fits all”)

• Using a process can improve the quality of the product
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Adaptive vs. Predictive 
Processes 
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• Lightweight, ‘agile’
• Control by feedback

• Heavyweight, ‘traditional’ 
• Control by planning 

Adaptive Predictive
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I Control by feedback
• Many short iterations (weeks)
• Small scale (<10 developers)
• Face-to-face communication

Control by planning 
• Few long iterations (months)
• Large scale (>30 developers)
• Written documents
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Face to face communication
• Code- & people-centric
• Egalitarian

Written documents
• Rule-centric
• Authoritarian
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• Problems:
– Long-term results hardly 

predictable
N d  d j  

• Problems:
– Inflexible with changing 

requirements
Hi h i i  d i  
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foundation

– Cowboy-coding chaos

– High integration and testing 
effort

– ‘Control freak’ bureaucracy
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Agile Software Development
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• Evolved in mid 1990s as part of a reaction against 
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heavyweight methods

• Many short iterations (weeks), ‘prototyping’:
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Analysis Design Implementation Testing Prototype
Iteration
#1
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Analysis Design Implementation Testing Prototype

Analysis Design Implementation Testing Prototype

#1

#2
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Analysis Design Implementation Testing Prototype#3
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• Control by feedback: reevaluation & revision of 
…
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eXtreme Programming (XP)
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eXtreme Programming (XP)
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XP Overview
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9 „Instead of cowboy coders we have software 
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y
sheriffs; working together as a team, quick on the 
draw, armed with a few rules and practices that are 
li ht  i  d ff ti “ 
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I light, concise, and effective.“ 
(James D. Wells, extremeprogramming.org)
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nd • XP=eXtreme Programming:
Nomen est omen  a code centered approach
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• XP culture: not just about getting work done
• Set of day to day best practices for developers and 
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k • Set of day-to-day best practices for developers and 
managers that encourage and embody certain values

• 5 values  12 practices/rules
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The 5 XP Values
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1. Communication
– Teamwork: consistent shared view of the system

O  ffi  i  d l   
YEAR

20
 7

32

– Open office environment: developers, managers, customers
– Verbal, informal, face-to-face conversation

2. Feedback Cost of

C
O
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I – Find required changes ASAP to avoid cost
– From the customer, through early 

prototypes & communication

Cost of
change
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– Testing, code review, team estimates
3. Simplicity

– Build the simplest thing that works for today

Point of time
within project
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– No work that might become unnecessary tomorrow
– Simple design easier to communicate

4 Courage
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k 4. Courage
– To change and to scrap, “embrace change”
– Better change now (cheaper)

Never ever give up!
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– Never ever give up!
5. Respect your teammates and your work



The 12 XP Practices
00
9 Fine scale feedback
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1. Pair Programming
Programming in teams of two: driver and navigator

2 Planning Game: method for project planning with the customer

C
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I 2. Planning Game: method for project planning with the customer
3. Test Driven Development

– First write test cases, then program code
F  h d f  i d    
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– For each defect, introduce new test case
4. Whole Team: teamwork of customer, developer/manager
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Shared understanding
5. Use an agreed Coding Standard
6 C ll ti  C d  O hi
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k 6. Collective Code Ownership
Everybody is responsible for and can change all code

7. Simple Design
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8. System Metaphor

Consistent, intuitive naming of program parts



The 12 XP Practices
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p
9. Continuous Integration

– Work with latest version

C
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I – Integrate local changes ASAP
10. Refactoring

 d i h  ibl
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– Improve design whenever possible
– Remove clutter & unnecessary complexity

11 S ll R l s s
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e 11. Small Releases

Programmer welfare
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k Programmer welfare
12. Sustainable Pace

No Overtime – change timing or scope instead
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Some XP Terminology
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• User story
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y
– Things the system needs to do for the users
– Written on a card in a few sentences

Should take 1 3 weeks to implement
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I – Should take 1-3 weeks to implement
• Release: running system that implements important user stories
• Spike
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– Small proof-of-concept prototype
– Explores the feasibility of an implementation approach

• Iteration
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e Iteration
– Phase of implementation, 1-3 weeks long
– Consists of tasks, each of which is 1-3 days long
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• Project velocity: used to estimate progress
– Either #stories / time (time)
– Or time / #stories (scope) 
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XP Workflow Overview
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User
Stories

DefectsProject velocity
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Release
Planning TestsIteration
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Small
Release

Next
Iteration

New
User Story
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Uncertain
Estimates

Confident
Estimates = is followed by
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XP Criticism
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– Single point-of-failure 
(-> source of stress, lack of technical expertise)

– May not be representative for all users ( > user conflicts)

C
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I – May not be representative for all users (-> user conflicts)
• Unstable Requirements because of informal change requests 

instead of formal change management (-> rework, scope creep)
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• Lack of documentation, e.g. tests instead of requirements 
documents

• Incremental design on the fly ( > more redesign effort)
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e • Incremental design on-the-fly (-> more redesign effort)
• Pair-programming required
• Interdependency of practices requires drastic organizational 
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changes

• Scalability? Distributed development?
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The Rational Unified 
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Process (RUP)
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RUP Overview
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9 • Extensible, customizable process framework
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, p
• Created by the Rational Software Corporation in the 

1980s and 1990s, which was sold to IBM in 2003
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• Now software process product of IBM
• IBM sells RUP tools, e.g. Rational Method Composer
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g p
for authoring, configuring and publishing processes

• Business-driven development
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• Tied to UML
• Heavyweight, i.e. of considerable size, but recent 
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changes influenced by lightweight, agile processes
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6 RUP Best Practices:
The RUP ABC
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The RUP ABC
Adapt the process
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p p
– right-size the process to project needs
– adapt process ceremony to lifecycle phase
– continuously improve the process

C
O

M
P

S
C

I – continuously improve the process
– balance project plans and associated estimates with the 

uncertainty of a project

B
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Balance competing stakeholder priorities 
– understand and prioritize business and stakeholder needs
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e – center development activities around stakeholder needs 
– balance asset reuse with stakeholder needs 

C
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k Collaborate across teams
– motivate individuals on the team to perform at their best 
– encourage cross-functional collaboration 
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– encourage cross-functional collaboration 
– provide effective collaborative environments 



The RUP ABC Cont’d
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9 Demonstrate value iteratively 
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– incremental value to enable early and continuous feedback 
– adapt your plans
– embrace and manage change 

C
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I – embrace and manage change 
– drive out key risks early 

El h  l l f b i
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Elevate the level of abstraction
– reusing existing assets 
– leverage higher-level tools  frameworks  and languages
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– focus on architecture 

F s ti sl   lit
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k Focus continuously on quality
– the entire team owns quality 
– test early and continuously 
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test early and continuously 
– incrementally build test automation



RUP Lifecycle
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• 4 phases divided into a series of timeboxed iterations
• Each iteration results in an increment (release)
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• Each iteration results in an increment (release)
• Disciplines (like traditional phases) which happen with varying 

emphasis in every phase
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1. Inception Phase
– Justification or business case
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– Project scope, use cases, key requirements
– Candidate architectures 

Risks  preliminary project schedule  cost estimate 

kl
an

d 
| N

ew
 Z
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2. Elaboration Phase

– Requirements, risk factors
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k q
– System architecture (Executable Architecture Baseline)
– Construction plan (including cost and schedule estimates)

3 Construction Phase: building the rest of the system (longest)
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3. Construction Phase: building the rest of the system (longest)
4. Transition Phase: deployment, feedback, user training



RUP Lifecycle
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RUP Criticism
00
9 • “High ceremony methodology”

Bur ucr tic: pr c ss f r v r thin
YEAR

20
 7

32

• Bureaucratic: process for everything
• Slow: must follow process to comply
• Excessive overhead:
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I • Excessive overhead:
rationale, justification, documentation, reporting, 
meetings, permission
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• Very customizable: can be everything and nothing
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But:
• RUP can be used in traditional waterfall style or in 

agile manner

ve
rs

ity
 o

f A
uc

k agile manner
• Example: dX process

– Fully compliant instance of RUP
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Fully compliant instance of RUP
– Identical to XP
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Summary
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Summary
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Summary
00
9

y

• Adaptive vs. predictive Processes
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p p
• eXtreme Programming (XP)

– Agile process focused on programming as a team
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– Short iterations, as much feed back as possible
– Best practices include collective code ownership, 
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Best practices include collective code ownership, 
refactoring, pair programming

• Rational Unified Process (RUP)
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– Heavyweight process framework
– Phases divided into iterations,
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k ,
several disciplines happening simultaneously

– Best practices include risk & change management, 
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p g g
use of tools, models & components



Quiz
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1. Describe three differences between adaptive and 
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p
predictive processes.
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2. Name five of the XP best practices.
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3. What are the characteristics of the RUP lifecycle?
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