
1

COMPSCI 732 FC §3. Approaches to mapping

Approaches to mapping

• XSLT
• RDBMS views
• CORBA IDL
• A declarative approach

‘Web Services Made Easier’, Sun Microsystems Technical White Paper,
http://java.sun.com/xml/webservices.pdf

The Java Web Services Tutorial, http://java.sun.com/webservices/tutorial.html

COMPSCI 732 FC §3. Approaches to mapping

XSL/XSLT

• Extensible Stylesheet Language (XSL) and XSL
Transformations (XSLT)

• XSL is a formatting language, for converting XML
documents into formatted documents (building upon
style sheets)
• Higher level approach

• Codes transformations as rules
• Condition patterns specified using Xpath expressions
• Little Java coding needed – a scripting approach

• Uni-directional mapping specification

COMPSCI 732 FC §3. Approaches to mapping

XSLT

• Basic approach, transform
from DOM to DOM using
XSL stylesheet to specify
the transformation

• Resultant DOM represents
formatted document which
is then walked to produce
output

• Some implementations
handle SAX inputs directly
(so don’t need a DOM)

COMPSCI 732 FC §3. Approaches to mapping

XSL Basic Approach

• XSL uses a rule-based template matching approach
• XSL uses a XML encoding so it has a tagged structure (which makes

it difficult to read)
• Example with the coffee price list DTD from the web services paper:

<!ELEMENT priceList (coffee)+>
<!ELEMENT coffee (name, price) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT price (#PCDATA) >

<priceList>
<coffee>
<name>Mocha Java</name>
<price>11.95</price>

</coffee>
<coffee>
<name>Sumatra</name>
<price>12.50</price>

</coffee>
</priceList>

2

COMPSCI 732 FC §3. Approaches to mapping

XSL Rules

• XSL is a rule-based language. Rules (template rules) have:
• A match pattern, to match against XML elements specified as an Xpath

expression
• A template which specifies the form of the document to produce if an

element matches
• A template may cause further rules to be applied

<xsl:stylesheet version=“1.0“ xmlns:xsl=“http://www.w3.org/1999/XSL/Transform“>
<xsl:template match="name"> Matches elements with tag name

<tr><td> Constructs a html table row
<xsl:apply-templates/> Apply a stylesheet to bits of name element

Result goes in this place
</td></tr> Completes the html table row

</xsl:template>

COMPSCI 732 FC §3. Approaches to mapping

XSL for Coffee Pricelist
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="priceList">

<html><head>Coffee Prices</head>
<body>

<table>
<xsl:apply-templates />

</table>
</body>

</html>
</xsl:template>
<xsl:template match="name">

<tr><td>
<xsl:apply-templates />

</td></tr>
</xsl:template>
<xsl:template match="price">

<tr><td>
<xsl:apply-templates />

</td></tr>
</xsl:template>

</xsl:stylesheet>

COMPSCI 732 FC §3. Approaches to mapping

Application to an example
<priceList> <html><head>Coffee Prices</head>

<body>
<table>

<coffee>
<name>Mocha Java</name> <tr><td>

Mocha Java
</td></tr>

<price>11.95</price> <tr><td>
11.95

</td></tr>
</coffee>
<coffee>

<name>Sumatra</name> <tr><td>
Sumatra

</td></tr>
<price>12.50</price> <tr><td>

12.50
</td></tr>

</coffee>
</priceList> </table>

</body>
</html> COMPSCI 732 FC §3. Approaches to mapping

Xpath and More Complex
Matching

• See the handout from Java Web Services Tutorial for a more
complete description of Xpath expressions
• “/” The root element
• “/priceList/name” name elements of priceList
• “SECT|PARA|NOTE” Only SECT, PARA, or NOTE elements
• “LIST/@type” The type attribute of LIST elements

• Using these can pull a XML structure apart and reorder the results
to give a very different tree shape as a result

3

COMPSCI 732 FC §3. Approaches to mapping

RDBMS views
• Allow database information to be accessed (and

sometimes modified) in different forms
• Based on SELECT statement

CREATE VIEW titles_view AS
SELECT title, type, price, pubdate FROM titles

• Allows any alternate structure possible through selections, joins,
orderings, grouping, and calculations

• However, to be updatable there are severe restrictions
• No aggregate functions, grouping, unions, distincts, derived

columns (calculations)
• Insert and update can only reference columns from one table when

a join is utilised
• Delete can only work on views based on one table

COMPSCI 732 FC §3. Approaches to mapping

RDBMS view example

CREATE VIEW publication_view AS
SELECT title, creator AS author, isbn, subject AS classification, description,

tableOfContents AS contents, cost AS price
FROM publication

CREATE VIEW publication_view AS
SELECT title, creator AS author, isbn, subject AS classification, description,

tableOfContents AS contents, cost/0.5855 AS price
FROM publication

COMPSCI 732 FC §3. Approaches to mapping

CORBA IDL

• IDL: Interface Description Language
• CORBA IDL is a language-independent interface

specification (declarative)
• Consists of modules, interfaces, types (structs,

enumerated, ints, reals, strings etc.)
• Also might include exceptions, references to other IDL

module specifications
• C++/Java-like syntax, but limited number of types

available

COMPSCI 732 FC §3. Approaches to mapping

IDL Components

• Types
• Basic types
• Named types
• Enumerations
• Structures
• Unions
• Arrays
• Sequences
• Recursive structures

• Constants
• Allow expressions

• Interfaces (are a type)
• Contain Operations

• Return result type
• Operation name
• Zero or more parameters

• in, out, inout

• User exceptions
• System exceptions
• Attributes
• Modules
• Forward declarations
• Inheritance

4

COMPSCI 732 FC §3. Approaches to mapping

IDL Types Examples
typedef long Millimeter;
enum WallTypes { interior, exterior, trombe, underground };
struct WallInfo {

WallTypes type;
Millimeter height;
Millimeter width;

}
union WallAtts switch (WallTypes) {

case trombe: struct Node {
long glazingArea; long value;

case underground: sequence<Node> children;
Millimeter soilDepth; };

}
typedef WallInfo RectangularRoom[4];
typedef sequence<WallInfo> GeneralRoom;

COMPSCI 732 FC §3. Approaches to mapping

IDL Interfaces Examples
module Building { // like a Java package
interface Wall {
exception Incomplete { string missingAtts };
// attribute definitions here…
long wallArea() raises(Incomplete);
void setHeight(in Millimeter newHeight);
void setWidth(in Millimeter newWidth);
…

}
interface TrombeWall : Wall {
void setGlazingArea(in long newArea);
…

}
interface Room {
boolean fixWalls(inout sequence<Wall> wallPieces);

}
}

COMPSCI 732 FC §3. Approaches to mapping

XSLT, RDBMS VIEW, IDL

• Allow for the transformation of data in one
representation into a new representation

• Limitations on the types of transforms supported
• XSLT and IDL are uni-directional
• RDBMS VIEW is bi-directional in very constrained

circumstances

• What can we do which is better than this?

COMPSCI 732 FC §3. Approaches to mapping

A declarative mapping
language

• Motivations for a declarative style
• Abstract from underlying representations
• Abstract from implementation language
• Capture of intent of a mapping
• Able to generate mapping code

• VML (View Mapping Language)
• Bi-directional mapping specification
• http://www.cs.auckland.ac.nz/~trebor/pub/phd/Ch5.pdf

5

COMPSCI 732 FC §3. Approaches to mapping

Structure of VML

• inter_view
• Describes the 2 schemas being mapped between

• Versions being mapped between
• Type of information transfer required (read-only, read_write,

integrated)
• Whether this is a complete or partial mapping

• inter_class
• Describes sets of classes that need to combine for a mapping
• Three parts to each inter_class description

• Invariants: what must hold true for this mapping to proceed
• Equivalences: the mappings to perform
• Initialisers: values to be set when a new object is created

COMPSCI 732 FC §3. Approaches to mapping

inter_class example
inter_view(idm, integrated, view1, read_write, complete).

inter_class([person],[male],
invariants(gender = 'male'),
equivalences(name = name,

age = age,
inity = masculinity)

).

inter_class([person],[female],
invariants(gender = 'female'),
equivalences(name = name,

age = age,
inity = femininity)

).

person
name
age

male
masculinity

female
femininity

person
name
age
gender
inity

COMPSCI 732 FC §3. Approaches to mapping

inter_class classes
• Can specify one or more classes from each schema

• If one class then inter_class is applied to every object of that
class (as long as the invariants are satisfied)

• If more than one class then the cross product of objects is used
for the mapping

• For example:
• Class a has objects o1 and o2
• Class b has objects o3, o4, and o5
• inter_class([a, b], [c], …) evaluates the mapping for:

• [o1, o3], [o1, o4], [o1, o5], [o2, o3], [o2, o4], [o2, o5]
• group() function allows all objects of a class to be grouped
• E.g., inter_class([a, group(b)], [c], …) evaluates the mapping for:

• [o1, [o3, o4, o5]], [o2, [o3, o4, o5]]

COMPSCI 732 FC §3. Approaches to mapping

invariants

• Define the conditions under which an inter_class is
applicable (e.g., gender = ‘male’)
• Reduce the set of objects which are evaluated

• Each individual invariant may only reference attributes
and objects from one of the schemas.

• A constraining condition applied in one direction is a
default value in the opposite direction.
• E.g., when creating a ‘person’ object from one of type ‘male’ in

the previous example then the ‘gender’ attribute of the ‘person’
object is set to ‘male’.

6

COMPSCI 732 FC §3. Approaches to mapping

initialisers

• Assignment statements for attributes
• Only applicable to newly created objects

• Can call methods of new objects

initialisers(
idm_space_face.face_property = 'idm_space_face',
idm_material_face.face_property = 'idm_material_face',
idm_material_face.material=>type_of_material = 'idm_window_material',
idm_material_face.material=>type_of_window = 'idm_single',
idm_material_face.material=>window_subtype = 'clear',
fe_opening@create(idm_space_face.plane, idm_space_face.plane, 'space', 0, 0,

idm_space_face.min=>x, 0 - idm_space_face.min=>y,
idm_space_face.max=>x, 0 - idm_space_face.max=>y,
idm_material_face.material=>window_subtype)

)
COMPSCI 732 FC §3. Approaches to mapping

equivalences

• Equations, functions, and procedures to perform a mapping
• Ordering of specification is unimportant
• Types of equivalence equations include:

• Initialisers (e.g., gloss_factor = 90.0)
• Equality (e.g., name = planeName)
• Pointer equality (e.g., plane = fe_face_window)
• Simple equations (e.g., r*sin(theta) = y_coord)
• Pointer references (e.g., apex1=>x = apex2=>x
• Functions (e.g., exists(end_point=>z)
• Aggregate functions (e.g., sum(windows=>(height*width))) = area

COMPSCI 732 FC §3. Approaches to mapping

equivalences

• Types of equivalence equations include:
• List and array references (e.g., axes[2] = v_ref)
• List and array iteration (e.g., classified_by[] = material[].name)
• Conditional list and array iteration, for example,

bijection(spaces[]@class(‘idm_space’), spaces=>list[])
bijection(spaces[]@class(‘idm_roof’), roofs=>list[])

• Functions (e.g., list_splitter(vals, splitvals))
• Procedures (e.g., map_to_from(procA(), procB()))
• Method invocation (e.g., plane@view_plane = fe@create_view(name))
• Type conversion – implicit evaluation or cast explicitly
• Unit conversion – explicit modelling
• Temporary/intermediate attributes (e.g., _temp)

