

Approaches to classifying mappings

- Still a research problem
 - · No complete understanding of 'hardness' of the problem
 - No complete understanding of descriptive power required for mapping languages for different tasks
 - Two viewpoints are to consider structures that can be mapped between, or semantic differences between structures
 - Neither gives a full picture of the problem
- · Many very simple mappings are impossible
 - E.g., width * depth = area
 - What types of mapping are not possible?

COMPSCI 732 FC §2. Types of Mapping

1

Structural mappings

	Object→Object	Attr→Attr	Object→Attr	Attr→Object
1→0	*	*		
0→1	*	*		
1→1	*	*	*	*
1→C	*	*	*	*
C→1	*	*	*	*
C→B	*	*	*	*
1→N	*			*
N→1	*		*	
C→N	*			*
N→C	*		*	
N→M	*			

Attr→Attr examples

1→0	
0→1	
1→1	
1→C	
C→1	
C→B	
1→N	N/A
N→1	N/A
C→N	N/A
N→C	N/A
N→M	N/A
COMPSCI	732 FC §2. Types of Mapping

Object→Object examples

1→0	Fees object not mapped for academic record display	
0 →1	Building object created in CAD when mapped from VRML (just geometry)	
1→1	Course object in nDeva maps to a course object in Cecil	
1→C	Column object in CAD mapped to 6 surface objects in VRML viewer	
C→1	Book and publisher object mapped to a single BookInfo object	
C→B	Product, manufacturer, supplier mapped to catalog entry and sale point	
1→N	Polygon object mapped to a number of line objects	
N→1	All course taken objects mapped to a student GPA object	
C→N	Shopping basket and customer in broker mapped to many orders	
N→C	A day's sale objects mapped to a purchase order and a credit notice	
N→M	N points mapped to N(N-1) lines for a connected graph	

Object→Attr examples

1→0	N/A		
0 →1	N/A		
1→1	Name object mapped to name attribute		
1→C	Address object mapped to 4 address fields		
C→1	2 point objects mapped to length		
C→B	4 point objects mapped to perimeter and area		
1→N	N/A		
N→1	A month's credit card items mapped to a total expenditure field		
C→N	N/A		
N→C	A server's request log mapped to total requests and requests per hour		
N→M	N/A		
COMPSCI 732 FC §2. Types of Mapping			

Attr→Object examples

1→0	N/A
0→1	N/A
1→1	
1→C	
C→1	
C→B	
1→N	
N→1	N/A
C→N	
N→C	N/A
N→M	N/A
COMPSCI	732 FC \$2. Types of Mapping

Conflict categories

- Identical: everything is the same
- Equivalent
 - Where different but equivalent modeling constructs have been applied but the perceptions are still the same and are coherent
 - Behavioral: if the same set of answers to any given query can be obtained from all representations
 - Mapping: instances can be put on a 1-1 correspondence
 - Transformational: if a representation can be obtained by applying a set of atomic transformations that by definition preserve equivalence
- Compatible
 - Not identical or equivalent, but modeling constructs, designer perception and integrity constraints are not contradictory
- Incompatible
 - · Contradictory because of the incoherence of the specification

COMPSCI 732 FC §2. Types of Mapping

What does this tell us?

- Generic categories of mappings we may face
- Generic types of conflicts that may occur
- Nothings about the hardness of particular mappings
 - E.g., how hard is it to map XML-based data, or EDI messages, or RDBMS, or...
- · What else could we consider?

COMPSCI 732 FC §2. Types of Mapping