
COMPSCI 732:

Software Tools and Techniques

Tools for Producing Quality Software

Ewan Tempero e.tempero@cs.auckland.ac.nz

www.cs.auckland.ac.nz/∼ewan

COMPSCI 732 c© Ewan Tempero – p.1/55

www.cs.auckland.ac.nz/~ewan

Research Interests

. . . to make programmers more productive, that is, help
the people who actually produce code to do so faster,
with less effort, fewer errors, and with more enjoyment
than currently

COMPSCI 732 c© Ewan Tempero – p.2/55

Research Interests

. . . to make programmers more productive, that is, help
the people who actually produce code to do so faster,
with less effort, fewer errors, and with more enjoyment
than currently

Theme
Software tools are needed for more than just the
production of software.

COMPSCI 732 c© Ewan Tempero – p.2/55

Observation 1

Much of the pain in software development is due to
having to deal with kludgey code.

⇒ We need to produce higher quality software than we
currently do

COMPSCI 732 c© Ewan Tempero – p.3/55

Observation 1

Much of the pain in software development is due to
having to deal with kludgey code.

⇒ We need to produce higher quality software than we
currently do
(whatever “higher quality” means)

COMPSCI 732 c© Ewan Tempero – p.3/55

Observation 2

We can’t know whether or not we have improved the
quality of our software if we can’t measure its quality

⇒ we need tools that measure quality of software

⇒ we need to know how to measure quality

⇒ we need to know what we mean by quality

⇒ we need to know how to measure software

COMPSCI 732 c© Ewan Tempero – p.4/55

Research Agenda

• Develop software metrics that might tell us something about
software quality

• Develop instruments to measure code according to the
identified metrics

• Apply the instruments to existing code

• Analyse the resulting data to identify potential quality
problems

• Determine whether or not the metrics actually do tell us
something about software quality

• Incorporate the use of the metrics into the software
development process

COMPSCI 732 c© Ewan Tempero – p.5/55

Research Agenda

• Develop software metrics that might tell us something about
software quality
◦ describe some metrics

• Develop instruments to measure code according to the
identified metrics

• Apply the instruments to existing code

• Analyse the resulting data to identify potential quality
problems

• Determine whether or not the metrics actually do tell us
something about software quality

• Incorporate the use of the metrics into the software
development process

COMPSCI 732 c© Ewan Tempero – p.5/55

Research Agenda

• Develop software metrics that might tell us something about
software quality
◦ describe some metrics

• Develop instruments to measure code according to the
identified metrics
◦ discuss issues developing such tools

• Apply the instruments to existing code

• Analyse the resulting data to identify potential quality
problems

• Determine whether or not the metrics actually do tell us
something about software quality

• Incorporate the use of the metrics into the software
development process

COMPSCI 732 c© Ewan Tempero – p.5/55

Research Agenda

• Develop software metrics that might tell us something about
software quality
◦ describe some metrics

• Develop instruments to measure code according to the
identified metrics
◦ discuss issues developing such tools

• Apply the instruments to existing code
◦ discuss issues relating to dealing with existing code

• Analyse the resulting data to identify potential quality
problems

• Determine whether or not the metrics actually do tell us
something about software quality

• Incorporate the use of the metrics into the software
development process

COMPSCI 732 c© Ewan Tempero – p.5/55

Research Agenda

• Develop software metrics that might tell us something about
software quality
◦ describe some metrics

• Develop instruments to measure code according to the
identified metrics
◦ discuss issues developing such tools

• Apply the instruments to existing code
◦ discuss issues relating to dealing with existing code

• Analyse the resulting data to identify potential quality
problems

• Determine whether or not the metrics actually do tell us
something about software quality

• Incorporate the use of the metrics into the software
development process
◦ integrate instruments into IDEs

COMPSCI 732 c© Ewan Tempero – p.5/55

What is Quality?

Understandability If I want to completely understand a given
class, what other classes do I need to understand?

Testability If I want to test a given class, what other classes do I
need to test?

Reusability If I want to reuse a given class, what other classes do
I need to reuse?

Readability . . .

Comprehensibility . . .

Changeability . . .

Maintainability . . .

. . .

⇒ possibly multiple metrics

COMPSCI 732 c© Ewan Tempero – p.6/55

Which is the better design?

COMPSCI 732 c© Ewan Tempero – p.7/55

Example

class A { class B {
public void aMethod1(B ab) { public void bMethod() {

... C aC = new C();
} ...

} }
}

• understandability of A?
• testability of A?
• reusability of A?

COMPSCI 732 c© Ewan Tempero – p.8/55

Class Reachability Sets

• Class reachability set for class A = the set of classes that A
transitively depends on

• Class reachability set size (CRSS) — metric for transitive
(compilation) dependence

• Hayden Melton’s PhD research

COMPSCI 732 c© Ewan Tempero – p.9/55

Class Reachability Sets

COMPSCI 732 c© Ewan Tempero – p.10/55

Class Reachability Sets

COMPSCI 732 c© Ewan Tempero – p.11/55

Class Reachability Sets

COMPSCI 732 c© Ewan Tempero – p.12/55

Class Reachability Sets

COMPSCI 732 c© Ewan Tempero – p.13/55

CRSS values

11

1 1 1

4 4

1 1 2 2

13

5

COMPSCI 732 c© Ewan Tempero – p.14/55

Presenting CRSS data

Frequency

2 4 6 8 10 12 14

2

4

6

8

10

CRSS

COMPSCI 732 c© Ewan Tempero – p.15/55

Netbeans CRSS

COMPSCI 732 c© Ewan Tempero – p.16/55

Azureus CRSS distribution

COMPSCI 732 c© Ewan Tempero – p.17/55

Class Reachability Sets

COMPSCI 732 c© Ewan Tempero – p.18/55

Class Reachability Sets

COMPSCI 732 c© Ewan Tempero – p.19/55

Class Reachability Sets

COMPSCI 732 c© Ewan Tempero – p.20/55

Class Reachability Sets

COMPSCI 732 c© Ewan Tempero – p.21/55

CRSS values

1

1

13

12

12

12

12

12

12

12

12

12

3

COMPSCI 732 c© Ewan Tempero – p.22/55

Presenting CRSS data

CRSS value42 6 8 10 12 14

2

4

6

8

10

12

Frequency

COMPSCI 732 c© Ewan Tempero – p.23/55

Corpus v0.9

COMPSCI 732 c© Ewan Tempero – p.24/55

Eclipse CRSS progression

COMPSCI 732 c© Ewan Tempero – p.25/55

Why Cycles are bad

• Understandability — where to start?
• Testability — where to start?
• Reusability — have to take everything

COMPSCI 732 c© Ewan Tempero – p.26/55

“Measuring Cycles”

COMPSCI 732 c© Ewan Tempero – p.27/55

“Measuring Cycles”

COMPSCI 732 c© Ewan Tempero – p.28/55

“Measuring Cycles”

COMPSCI 732 c© Ewan Tempero – p.29/55

SCCS

• Strongly Connected Components (SCC) — subgraph in
which every vertex is reachable from every other vertex

• Largest “cycle” for a given set of vertices
• SCCS — Strongly Connected Component Size

COMPSCI 732 c© Ewan Tempero – p.30/55

SCCS

COMPSCI 732 c© Ewan Tempero – p.31/55

Azureus-2.3.0.4 SCCS

COMPSCI 732 c© Ewan Tempero – p.32/55

JRE-1.4.2.04 SCCS

COMPSCI 732 c© Ewan Tempero – p.33/55

SCCS over Corpus

COMPSCI 732 c© Ewan Tempero – p.34/55

The joy of debugging

public class D {
private String s;
public D(String s) {

this.s = s;
}
public void doD() {

System.out.println(s.trim());
}

}

• When executing an application containing this class, a NullPointerException

occurs when trim is called.

• Questions we must answer in trying to identify the fault that led to the observed
failure:

◦ How is it that s is null?

◦ Where did the null come from?

COMPSCI 732 c© Ewan Tempero – p.35/55

Finding null

 C c = new C();

}

public class C {

public class B {

public class D {

}

}

}

public class E {

}

public class F {

}

 public static void doE(C c) {

 }

 public void doF(String string) {

 }

 D d = new D(string);
 do.doit(); F f = new F();

 f.doF(c.get());

 public D(String s) {
 this.s = s;
 }
 public void doD() {
 System.out.println(
 }

 private String s;

 String name;
 public static C create() {

 c.set(name);
 }

 public static void main(String[] args) {

 }

 private String str;
 public String get() {

 }
 public void set(String str) {

 }
 this.str = str;

 return str;

 C c = B.create();
 D d = new D(c.get());
 d.doD();
 E.doE(c);

);s.trim()

public class A {

COMPSCI 732 c© Ewan Tempero – p.36/55

Use-Def Chains

s.trim()

public class A {

}

public class C {

public class B {

public class D {

}

}

}

public class E {

}

public class F {

}

 public static void doE(C c) {

 }

 public void doF(String string) {

 }

 D d = new D(string);
 do.doit(); F f = new F();

 f.doF(c.get());

 public D(String s) {
 this.s = s;
 }
 public void doD() {
 System.out.println(
 }

 private String s;

 String name;
 public static C create() {
 C c = new C();
 c.set(name);
 }

 public static void main(String[] args) {

 }

 private String str;
 public String get() {

 }
 public void set(String str) {

 }
 this.str = str;

 return str;

 C c = B.create();
 D d = new D(c.get());
 d.doD();
 E.doE(c);

);

COMPSCI 732 c© Ewan Tempero – p.37/55

Use-Def Indirect Coupling

• A class A is use-def indirectly coupled to a class B if a value
defined in B is used in A

• The path between use and def is called a use-def chain
• Intuition is that this kind of coupling can be a source of

difficulty — when a failure occurs in D it’s not obvious that
one should consider B

Hong Yul Yang’s PhD research

COMPSCI 732 c© Ewan Tempero – p.38/55

Indirect Coupling between classes

COMPSCI 732 c© Ewan Tempero – p.39/55

Lengths of chains

COMPSCI 732 c© Ewan Tempero – p.40/55

How to measure code?

• Need to parse code — create syntax model (aka abstract
syntax trees)

• Need to resolve names — create semantic model
• Need sophisticated analysis for some metrics
• Need code!

COMPSCI 732 c© Ewan Tempero – p.41/55

Parsing Issues

• Different issues for different languages
• Even “simple” languages such as Java are not easy to parse
• Analysing code 6= compiling code

COMPSCI 732 c© Ewan Tempero – p.42/55

Language Issues

#include <iostream>
#include <string>
#include "Address.cpp"

using namespace std;

int main() {
Address add;
cout << add.print() << endl;

}

COMPSCI 732 c© Ewan Tempero – p.43/55

But Java is a simple language!

• lots of parsers around, none of them easy to use
• lots of grammars around, all of questionable quality
• and Java isn’t simple . . .
• (but it is simpler than C++)
• (and there’s lots of code around)
• (and we can analyse bytecode!)

COMPSCI 732 c© Ewan Tempero – p.44/55

Source vs Bytecode

class A {
E field;
public void method(B aB, C aC) {

D aD = aB;
field.doit(aC.getIt(aD), Math.PI);

}
}

COMPSCI 732 c© Ewan Tempero – p.45/55

Source vs Bytecode

class A {
E field;
public void method(B aB, C aC) {

D aD = aB;
field.doit(aC.getIt(aD), Math.PI);

}
}

COMPSCI 732 c© Ewan Tempero – p.46/55

Source vs Bytecode

class A {
E field;
public void method(B aB, C aC) {

D aD = aB;
field.doit(aC.getIt(aD), Math.PI);

}
}

COMPSCI 732 c© Ewan Tempero – p.47/55

Source vs Bytecode

enum MyEnum { A, B, C; }

class MyEnum extends java.lang.Enum {

}

COMPSCI 732 c© Ewan Tempero – p.48/55

Analysing code 6= compiling code

• Need to build model for whole “program”
◦ E.g., Eclipse is about 12,000 classes, 1.5 million LOC —

one model?
• Some metrics require analysis not required in compilation

◦ E.g., use-def chains

COMPSCI 732 c© Ewan Tempero – p.49/55

Software Corpora

• Corpus — A collection of writings or recorded remarks used
for linguistic analysis

• If all analysis is done on the same corpus, then results are
more likely to be comparable (benchmarks)

• If the corpus is representative of a population, then findings
due to analysis might apply to the whole population

• Should work for software too!
◦ > 100 open-source Java applications
◦ > 250 versions (e.g. 13 versions of eclipse)
◦ source code of most
◦ byte code of most
◦ needs to be managed

COMPSCI 732 c© Ewan Tempero – p.50/55

From Metrics to Process

• If cycles are bad, let’s not have any

⇒ tool support for detecting cycles

⇒ should be part of development environment

⇒ JooJ

COMPSCI 732 c© Ewan Tempero – p.51/55

JooJ

COMPSCI 732 c© Ewan Tempero – p.52/55

JooJ

COMPSCI 732 c© Ewan Tempero – p.53/55

How Fast?

COMPSCI 732 c© Ewan Tempero – p.54/55

Tools for Producing Quality Software

• Measurement instruments
⇒ development support

• Corpus Management
• Data analysis and presentation

COMPSCI 732 c© Ewan Tempero – p.55/55

	Research Interests
	Observation 1
	Observation 2
	Research Agenda
	What is Quality?
	Which is the better design?
	Example
	Class Reachability Sets
	Class Reachability Sets
	Class Reachability Sets
	Class Reachability Sets
	Class Reachability Sets
	CRSS values
	Presenting CRSS data
	Netbeans CRSS
	Azureus CRSS distribution
	Class Reachability Sets
	Class Reachability Sets
	Class Reachability Sets
	Class Reachability Sets
	CRSS values
	Presenting CRSS data
	Corpus v0.9
	Eclipse CRSS progression
	Why Cycles are bad
	mbox {``Measuring Cycles''}
	mbox {``Measuring Cycles''}
	mbox {``Measuring Cycles''}
	SCCS
	SCCS
	Azureus-2.3.0.4 SCCS
	JRE-1.4.2.04 SCCS
	SCCS over Corpus
	The joy of debugging
	Finding {	t null}
	Use-Def Chains
	Use-Def Indirect Coupling
	Indirect Coupling between classes
	Lengths of chains
	How to measure code?
	Parsing Issues
	Language Issues
	But Java is a simple language!
	Source vs Bytecode
	Source vs Bytecode
	Source vs Bytecode
	Source vs Bytecode
	Analysing code $
eq $ compiling code
	Software Corpora
	From Metrics to Process
	JooJ
	JooJ
	How Fast?
	Tools for Producing Quality Software

