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Research Interests

. . . to make programmers more productive, that is, help
the people who actually produce code to do so faster,
with less effort, fewer errors, and with more enjoyment
than currently
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Research Interests

. . . to make programmers more productive, that is, help
the people who actually produce code to do so faster,
with less effort, fewer errors, and with more enjoyment
than currently

Theme
Software tools are needed for more than just the
production of software.

COMPSCI 732 c© Ewan Tempero – p.2/55



Observation 1

Much of the pain in software development is due to
having to deal with kludgey code.

⇒ We need to produce higher quality software than we
currently do
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Observation 1

Much of the pain in software development is due to
having to deal with kludgey code.

⇒ We need to produce higher quality software than we
currently do
(whatever “higher quality” means)
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Observation 2

We can’t know whether or not we have improved the
quality of our software if we can’t measure its quality

⇒ we need tools that measure quality of software

⇒ we need to know how to measure quality

⇒ we need to know what we mean by quality

⇒ we need to know how to measure software
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Research Agenda

• Develop software metrics that might tell us something about
software quality

• Develop instruments to measure code according to the
identified metrics

• Apply the instruments to existing code

• Analyse the resulting data to identify potential quality
problems

• Determine whether or not the metrics actually do tell us
something about software quality

• Incorporate the use of the metrics into the software
development process
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Research Agenda

• Develop software metrics that might tell us something about
software quality
◦ describe some metrics

• Develop instruments to measure code according to the
identified metrics
◦ discuss issues developing such tools

• Apply the instruments to existing code
◦ discuss issues relating to dealing with existing code

• Analyse the resulting data to identify potential quality
problems

• Determine whether or not the metrics actually do tell us
something about software quality

• Incorporate the use of the metrics into the software
development process
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Research Agenda

• Develop software metrics that might tell us something about
software quality
◦ describe some metrics

• Develop instruments to measure code according to the
identified metrics
◦ discuss issues developing such tools

• Apply the instruments to existing code
◦ discuss issues relating to dealing with existing code

• Analyse the resulting data to identify potential quality
problems

• Determine whether or not the metrics actually do tell us
something about software quality

• Incorporate the use of the metrics into the software
development process
◦ integrate instruments into IDEs

COMPSCI 732 c© Ewan Tempero – p.5/55



What is Quality?

Understandability If I want to completely understand a given
class, what other classes do I need to understand?

Testability If I want to test a given class, what other classes do I
need to test?

Reusability If I want to reuse a given class, what other classes do
I need to reuse?

Readability . . .

Comprehensibility . . .

Changeability . . .

Maintainability . . .

. . .

⇒ possibly multiple metrics
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Which is the better design?

COMPSCI 732 c© Ewan Tempero – p.7/55



Example

class A { class B {
public void aMethod1(B ab) { public void bMethod() {

... C aC = new C();
} ...

} }
}

• understandability of A?
• testability of A?
• reusability of A?
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Class Reachability Sets

• Class reachability set for class A = the set of classes that A
transitively depends on

• Class reachability set size (CRSS) — metric for transitive
(compilation) dependence

• Hayden Melton’s PhD research
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Class Reachability Sets
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Class Reachability Sets

COMPSCI 732 c© Ewan Tempero – p.11/55



Class Reachability Sets
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Class Reachability Sets
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CRSS values
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Presenting CRSS data
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Netbeans CRSS
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Azureus CRSS distribution
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Class Reachability Sets
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Class Reachability Sets
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Class Reachability Sets
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Class Reachability Sets
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Presenting CRSS data
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Corpus v0.9
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Eclipse CRSS progression
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Why Cycles are bad

• Understandability — where to start?
• Testability — where to start?
• Reusability — have to take everything
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“Measuring Cycles”
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“Measuring Cycles”
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“Measuring Cycles”
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SCCS

• Strongly Connected Components (SCC) — subgraph in
which every vertex is reachable from every other vertex

• Largest “cycle” for a given set of vertices
• SCCS — Strongly Connected Component Size
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SCCS
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Azureus-2.3.0.4 SCCS
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JRE-1.4.2.04 SCCS
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SCCS over Corpus
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The joy of debugging

public class D {
private String s;
public D(String s) {

this.s = s;
}
public void doD() {

System.out.println(s.trim() );
}

}

• When executing an application containing this class, a NullPointerException

occurs when trim is called.

• Questions we must answer in trying to identify the fault that led to the observed
failure:

◦ How is it that s is null?

◦ Where did the null come from?
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Finding null

        C c = new C();

}

public class C {

public class B {

public class D {

}

}

}

public class E {

}

public class F {

}

    public static void doE(C c) {

    }

    public void doF(String string) {

    }

        D d = new D(string);
        do.doit();        F f = new F();

        f.doF(c.get());

    public D(String s) {
        this.s = s;
    }
    public void doD() {
        System.out.println(
    }

    private String s;

    String name;
    public static C create() {

        c.set(name);
    }

    public static void main(String[] args) {

    }

    private String str;
    public String get() {

    }
    public void set(String str) {

    }
        this.str = str;

        return str;

        C c = B.create();
        D d = new D(c.get());
        d.doD();
        E.doE(c);

);s.trim()

public class A {
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Use-Def Chains

s.trim()

public class A {

}

public class C {

public class B {

public class D {

}

}

}

public class E {

}

public class F {

}

    public static void doE(C c) {

    }

    public void doF(String string) {

    }

        D d = new D(string);
        do.doit();        F f = new F();

        f.doF(c.get());

    public D(String s) {
        this.s = s;
    }
    public void doD() {
        System.out.println(
    }

    private String s;

    String name;
    public static C create() {
        C c = new C();
        c.set(name);
    }

    public static void main(String[] args) {

    }

    private String str;
    public String get() {

    }
    public void set(String str) {

    }
        this.str = str;

        return str;

        C c = B.create();
        D d = new D(c.get());
        d.doD();
        E.doE(c);

);
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Use-Def Indirect Coupling

• A class A is use-def indirectly coupled to a class B if a value
defined in B is used in A

• The path between use and def is called a use-def chain
• Intuition is that this kind of coupling can be a source of

difficulty — when a failure occurs in D it’s not obvious that
one should consider B

Hong Yul Yang’s PhD research

COMPSCI 732 c© Ewan Tempero – p.38/55



Indirect Coupling between classes
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Lengths of chains
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How to measure code?

• Need to parse code — create syntax model (aka abstract
syntax trees)

• Need to resolve names — create semantic model
• Need sophisticated analysis for some metrics
• Need code!
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Parsing Issues

• Different issues for different languages
• Even “simple” languages such as Java are not easy to parse
• Analysing code 6= compiling code
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Language Issues

#include <iostream>
#include <string>
#include "Address.cpp"

using namespace std;

int main() {
Address add;
cout << add.print() << endl;

}
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But Java is a simple language!

• lots of parsers around, none of them easy to use
• lots of grammars around, all of questionable quality
• and Java isn’t simple . . .
• (but it is simpler than C++)
• (and there’s lots of code around)
• (and we can analyse bytecode!)
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Source vs Bytecode

class A {
E field;
public void method(B aB, C aC) {

D aD = aB;
field.doit(aC.getIt(aD), Math.PI);

}
}
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Source vs Bytecode

class A {
E field;
public void method(B aB, C aC) {

D aD = aB;
field.doit(aC.getIt(aD), Math.PI);

}
}
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Source vs Bytecode

enum MyEnum { A, B, C; }

class MyEnum extends java.lang.Enum {

}
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Analysing code 6= compiling code

• Need to build model for whole “program”
◦ E.g., Eclipse is about 12,000 classes, 1.5 million LOC —

one model?
• Some metrics require analysis not required in compilation

◦ E.g., use-def chains
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Software Corpora

• Corpus — A collection of writings or recorded remarks used
for linguistic analysis

• If all analysis is done on the same corpus, then results are
more likely to be comparable (benchmarks)

• If the corpus is representative of a population, then findings
due to analysis might apply to the whole population

• Should work for software too!
◦ > 100 open-source Java applications
◦ > 250 versions (e.g. 13 versions of eclipse)
◦ source code of most
◦ byte code of most
◦ needs to be managed
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From Metrics to Process

• If cycles are bad, let’s not have any

⇒ tool support for detecting cycles

⇒ should be part of development environment

⇒ JooJ
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JooJ
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JooJ
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How Fast?
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Tools for Producing Quality Software

• Measurement instruments
⇒ development support

• Corpus Management
• Data analysis and presentation
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