
COMPSCI 732 1

NXDs - what are the other issues?

COMPSCI 732 2

What other features of NXDs are 

important?

• Round tripping

• Role of schema

• Locking or access control

• Transactions

• Recovery

• Query optimization

COMPSCI 732 3

Round tripping

Definition: you can store an XML document in a native 

XML database and get the “same” document back again.

This is important:

•in document centric applications where CDATA sections,

comments and processing instructions are an important part 

of the document.

•to many legal and medical applications, which are 

required by law to keep exact copies of documents.

All NXDs can round trip documents at the level of elements, 

attributes, PCDATA and document order.

As a general rule, text based NXDs round trip XML documents exactly,

While model based NXDs round trip XML documents at the level of 

their document model. COMPSCI 732 4

Example: Round tripping
<?xml version="1.0"?> 

<addresses version="1.0"> 

<address id="1"> 

<!-- address of HoD -->

<fullname>John Hosking</fullname> 

<town>Auckland</town>

<country>New Zealand</country> 

</address>

</addresses>

<?xml version="1.0"?> 

<addresses version="1.0"> 

<address id="1"> 

<!-- address of HoD -->

<fullname>John Hosking</fullname> 

<town>Auckland</town>

<country>New Zealand</country> 

</address>

</addresses>

<addresses version="1.0"> 

<address id="1"> 

<fullname>John Hosking</fullname> 

<town>Auckland</town>

<country>New Zealand</country> 

</address>

</addresses>

NXD

with

round tripping

NXD

without

round tripping



COMPSCI 732 5

Role of schemas in RDBs

• Checking consistency of database

• Physical storage e.g., fixed vs variable length 

records

• Query processing e.g., know structure of data 

and mapping to physical storage

• Query optimization e.g., derive integrity 

constraints such as primary key, foreign key etc.

• What else?

COMPSCI 732 6

Schemas in NXDs

Some NXDs do not require a schema, e.g. Apache 

Xindice (pronounced zeen-dee-chay).

“You also gain a lot of flexibility through the 

semistructured nature of XML and the schema 

independent model used by Xindice.”

Other NXDs do require a schema, e.g., Tamino.

What do you gain and what do you lose?

7

Schema-less NXDs
•Gain

•Flexibility

•Don’t have to worry about schema evolution when 

XML document updated

•Lose

•Consistency checking

•Detail for query processing

•Detail for mapping to physical storage

One possibility is to allow some kind of hybrid where 

user chooses where it is appropriate to specify schema 

and where it isn’t… COMPSCI 732 8

Schema languages that have been 

suggested

Schemas used to specify valid elements that can occur in a 

document, the order in which they occur and specify 

integrity constraints.

DTD – specify order and occurrence of elements BUT 

different syntax from XML, and doesn’t support data 

types.

XDR – same syntax as XML, and supports data types, 

submitted to W3C by Microsoft Corporation BUT 

rejected by W3C.

XML Schema – supports more data types than XDR, 

allows for the creation of custom data types.



COMPSCI 732 9

DTD

SAMPLE XML FRAGMENT

<uoa_student num=“uoa000x">

<name>George Burdell</name> 

<age>21</age>

</uoa_student>

DTD FOR SAMPLE XML FRAGMENT

<!ELEMENT uoa_student (name, age)>

<!ATTLIST uoa_student num CDATA> 

<!ELEMENT name (#PCDATA)> 

<!ELEMENT age (#PCDATA)> 

10

XDR (XML Data Reduced)
SAMPLE XML FRAGMENT

<uoa_student num=“uoa000x">

<name>George Burdell</name> 

<age>21</age>

</uoa_student>

XDR FOR SAMPLE XML FRAGMENT

<Schema name="myschema" 

xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes"> 

<ElementType name="age" dt:type="ui1" /> 

<ElementType name="name" dt:type="string" /> 

<AttributeType name="num" dt:type="string" /> 

<ElementType name=“uoa_student" order="seq"> 

<element type="name" minOccurs="1" maxOccurs="1"/> 

<element type="age" minOccurs="1" maxOccurs="1"/> 

<attribute type="num" /> 

</ElementType>

</Schema>

11

XML Schema

XSD FOR SAMPLE XML FRAGMENT

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema" > 

<xsd:element name=“uoa_student"> 

<xsd:complexType> 

<xsd:sequence>

<xsd:element name="name" type=“xsd:string"/> 

<xsd:element name="age" type=“xsd:unsignedInt"/> 

</xsd:sequence>

<xsd:attribute name="num"> 

<xsd:simpleType> 

<xsd:restriction base=“xsd:string"> 

<xsd:pattern value=“uoa\d{3}[A-Za-z]{1}"/> 

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType> 

</xsd:element>

</xsd:schema> COMPSCI 732 12

What should happen when the 

schema changes?
• prevent users from changing DTDs/schema 

as long as documents exist in the collection 
(not flexible)

• refuse edit if any documents in collection 
fails to validate against the new schema (not 
flexible enough)

• delete parts of the instance documents that 
were referenced by the deleted parts of the 
schema (difficult to do!)

• Update the schema (how difficult?)



13

Summary
• XML was originally described as a meta-markup 

language. It soon became clear that XML also provided a 
way to describe data making it important as a data storage 
and interchange format.

• NXDs are not yet widely used, although there are open 
source and commercial implementations.

• Some NXDs are better for some applications:

– How structured the data is

– If data is data or document centric

– Whether round tripping is important or not

– Whether the main use is querying or updating the data

– …

• There are still many open questions in the implementation 
and use of NXDs


