
COMPSCI 732 1

Numbering schemes in Native XML

Databases (NXDs)

COMPSCI 732 2

Software AG pioneered the native XML database approach

with a product called Tamino. Their aim was to build a

DBMS from the bottom up to easily and efficiently store,

retrieve, and query XML structured data.

Tamino XML Server

COMPSCI 732 3

Why use Tamino XML Server?

from http://www.softwareag.com/tamino/

"An XML server can store XML data natively, which

means without further conversion into other formats, and it

can query and transform that data using the Web and XML

specifications and interfaces. In addition, it integrates

cleanly with Web Servers and application servers in

existing infrastructures. Furthermore, Tamino XML Server

does not try to replace existing relational databases for the

tasks that RDBMS systems are well suited.”

RDBMS

• Data in multiple tables

• Cells have a single value

• Atomic cell values

• Row/column order not

defined

• Schema required

• Little support for recursive

elements

• Joins often necessary to

retrieve XML documents

• Query with SQL retrofitted

for XML

XML

• Data in hierarchical

structure

• Nodes have element and/or

attribute values

• Elements can be nested

• Elements are ordered

• Elements can be recursive

• Schema optional

• Direct storage/retrieval of

XML documents

• Query with XML standards
Major mismatches between XML data and RDBMS

(for storing XML documents)

5

Tamino XML Server
This type of native XML server system exposes the data and

the processing model via XML standards:

• an XML document is generally the fundamental unit of

storage

• XML DTDs or schemas rather than RDBMS schemas are

used as the “data definition language” that defines the

properties of document collections

• XPath or another XML-specific query language such as

XQuery is used to locate documents meeting the search

criteria

• and some products allow XML data to be processed with

SAX, DOM, XSLT, etc., in the actual server engine as

opposed to in an external utility.
COMPSCI 732 6

The paper goes on to say …

1. XML enabled RDBMS are not optimal if you have

document centric XML documents that need to be stored

efficiently.

2. The distinction between document centric and data

centric is fuzzy.

3. Tamino XML Server presents a "virtual database" upon

which developers can build Web and electronic business

applications using standard XML development tools,

schemas, and query languages. The actual reality behind

the scenes consists of a combination of native XML data

stores and other data sources mapped onto XML.

4. The papers didn’t elaborate on the physical storage

COMPSCI 732 7

Back to NXD generally

Native XML databases are designed especially to

store XML documents, and also support:

•Transactions,

•Security,

•Multi-user access,

•Programmatic APIs,

•Query languages,

•…

COMPSCI 732 8

Other features of NXD

NXDs are most useful for storing document centric

documents because they support things like:

•Collections,

•Document order,

•Processing instructions,

•Comments,

•CDATA sections,

•XML query languages.

e.g. Can ask queries like “Get me all documents in which

the second section title contains the word “Background””

COMPSCI 732 9

Collections

Many NXD support collections.

You may have collections of documents or collections of

elements.

This is useful for limiting queries to entities in the

collection.

e.g., consider a NXD that stores students records

(transcripts).

It is possible to define a collection based on year, so that

queries can be limited to transcripts for a particular year.
COMPSCI 732 10

Query languages

The most popular query languages to date are based on

XPath.

Since the W3C has defined XQuery, XPath has become

more popular.

Previously, many propriety query languages were supported.

The query language must support different kinds of

queries, including paths through the hierarchy, missing

levels in the hierarchy, ordering, many documents,

collections.

11

XPath
XPath uses path expressions to navigate through the

logical, hierarchical structure of an XML document.

An XPath expression locates nodes within a tree.

book//section/title

Finds all “title” elements that are children of “section”

elements which have an ancestor named “book”.
book

section

book book

title

chapter

section

title

section

paragraph

title COMPSCI 732 12

XPath predicate expressions
book//section[contains(title, ‘XML’)]

Find all sections whose title contains the string “XML”.

The result of a path expression is a sequence of distinct

nodes in document order.

book

chapter

section

title

XML for Dummies

13

XPath processing
book//figure/caption

Follow every path beginning at book to check for potential

figure descendents, if there is no way to determine

the location of “figure” descendents in advance.

Index structures are needed to efficiently perform queries

on large document collections.

The indexes must support both structural and value based

selections. B+ trees (or similar) work well for value based

selections. What about ancestor/descendant and parent/child

relationships? COMPSCI 732 14

Recapping – so far
•Tamino XML Server is a commercial native XML

database. Tamino was the first NXD.

•Because it is a commercial product, we cannot find out

much about the structure or organization of data in Tamino.

•NXD support features that most traditional database

management systems support.

•Because of the nature of XML, there are some curly

questions about how best to support some of these features.

•Querying is important and is more difficult due to the

hierarchical nature of the data and the heterogeneity of the

structure of the data.

•A query may involve both structure and values.

15

Numbering schemes for indexes
1. A numbering scheme assigns a unique identifier to

each node in a logical document tree.

2. The generated identifiers are used in indexes as a

reference to the actual node.

3. A numbering scheme provides mechanisms to quickly

determine the structural relationship between a pair of

nodes and to identify all occurrences of such a relationship

in a single document or a collection of documents.

4. Useful for Xpath queries, such as,

//para[contains(., ‘XML’)]/parent::node() 16

Numbering scheme 1
Uses document id, node position and nesting depth to

identify nodes.

Each element is identified by a 3-tuple

(document id, start position:end position, nesting level)

Start and end position might be defined by counting

word numbers from the beginning of the document.

Ancestor-descendant relationships can be determined

between a pair of nodes as follows:

A node x with 3-tuple (D1, S1:E1, L1) is a ancestor of

a node y with 3-tuple (D2, S2:E2, L2) if and only if D1=D2,

S1<S2 and E2<E1.

COMPSCI 732 17

Example of numbering scheme 1

<contact>

<name>Bill Smith</name>

<phone>

<office>3737599</office>

<home>5993737</home>

</phone>

</contact>

contact: (1, 1:14, 1)

name: (1, 2:5, 2)

phone: (1, 6:13, 2)

office: (1, 7:9, 3)

home: (1, 10:12, 3)

Is office a descendant of contact?

D1=D2, S1<S2, E2<E1

1=1, 1<7, 9<14

Is office a descendant of name?

D1=D2, S1<S2, E2<E1

1=1, 2<7, 9>5 18

Numbering scheme 2 - XISS
Assigns a pair of numbers <order,size> to each node such

that

•for each node y and its parent x, order(x) < order(y) and

order(y)+size(y) <= order(x)+size(x), and

•for two sibling nodes x and y, if x is the predecessor of y

in preorder traversal, order(x)+size(x) <= order(y).

Order is assigned on a preorder traversal of the node tree,

size is an arbitrary integer larger than the total number of

descendants of the current node.

The ancestor-descendant relationship between two nodes

can be determined by the following: x is an ancestor of y if

and only if order(x) < order(y) <= order(x)+size(x).

COMPSCI 732 19

Example of XISS
<contact>

<name>Bill Smith</name>

<phone>

<office>3737599</office>

<home>5993737</home>

</phone>

</contact>
contact: (1, 8)

name: (2, 2)

Bill Smith: (3,1)

phone: (4, 5)

office: (5, 2)

home: (7, 2)

3737599: (6,1)

5993737: (8,1)

Is office (y) a descendant of contact (x)?

Order(x)<order(y)<=order(x)+size(x)

1<5<=9

Is office a descendant of name?

Order(x)<order(y)<=order(x)+size(x)

2<5>4

contact

name phone

office home

1,8

2,2 4,5

5,2 7,2

3737599 5993737

8,16,1

Bill Smith

3,1

COMPSCI 732 20

Advantages of XISS

•Ancestor-descendant relationship can be determined in

constant time.

•Supports document updates via node insertions or

removals by introducing sparse identifiers between

existing nodes, and no reordering of the document tree

is necessary unless the range of sparse identifiers is

exhausted.

COMPSCI 732 21

Example of advantages of XISS

contact

name phone

office home

1,9

2,3 5,5

6,2 8,2

Bill Smith

3,1 4,1

Is office (y) a descendant of contact (x)?

Order(x)<order(y)<=order(x)+size(x)

1<6<=10

Is office a descendant of name?

Order(x)<order(y)<=order(x)+size(x)

2<6>5

3737599 5993737

7,1 9,1

22

Numbering scheme 3
Models the document tree as a complete k-ary tree, where

k is equal to the max number of child nodes of an element

in the document.

A unique node id is assigned to each node by traversing the

tree in level-order.

Because the tree is assumed to be complete, spare ids are

assigned at several positions.

This scheme makes it easy to determine the id of parent,

sibling and possible child nodes.

e.g. for a k-ary tree, parenti = floor(((i-2)/k)+1)

for a k-ary tree, the jth child of node i is child(i,j) = k(i-1)+j+1

COMPSCI 732 23

Example of numbering scheme 3

8 15

<contact>

<name>Bill Smith</name>

<phone>

<office>3737599</office>

<home>5993737</home>

</phone>

</contact>

9 10 11 13

contact

name phone

office home

1

2 3

6 7

Bill Smith

5

3737599 5993737

12

4

14

Disadvantage: Completeness constraint imposes major

restriction on maximum document size to be indexed,

particularly where tree is very unbalanced.

Generally, documents are unbalanced with many nodes at

lower levels.
COMPSCI 732 24

eXist’s numbering scheme

Based on numbering scheme 3.

Drops completeness constraint in favor of an alternating

scheme.

The number of children a node may have is recomputed for

every level of the tree, such that:

for two nodes x,y of a tree, size(x)=size(y) if

level(x)=level(y), where size(n) is number of children of

node(n) and level(m) is the length of the path from the root

of the tree to m.

The information about the number of children a node may

have at each level is stored with the document in an array.

COMPSCI 732 25

Example of eXist’s numbering scheme

contact

name phone

office home

1

2 3

6 7

Bill Smith

5

3737599 5993737

10

4

118 9

<contact>

<name>Bill Smith</name>

<phone>

<office>3737599</office>

<home>5993737</home>

</phone>

</contact>

26

Advantages of eXists numbering

scheme
Accounts for the fact that documents are more likely to have

more nodes at lower levels in the document tree while there

are fewer elements at the top levels of the hierarchy.

Less spare identifiers have to be inserted cf. numbering

scheme 3.

Inserting a node at deeper levels in the tree has no effect

on the identifiers assigned to nodes at higher levels.

The kinds of queries that are easily answered are those that

are asked on the child, attribute and descendant axes, e.g.,

//para[contains(., ‘XML’)]/parent::node()

COMPSCI 732 27

Disadvantages of eXists

numbering scheme

eXist does not currently provide an advanced update

mechanism.

Documents can be updated as a whole but it isn’t possible

to manipulate single nodes in eXist.

The authors of the paper are working on this…

COMPSCI 732 28

Sources

• Tamino,
http://www1.softwareag.com/Corporate/products/tamino/,
2004

• Quanzhong Li, Bongki Moon: Indexing and Querying
XML Data for Regular Path Expressions. Proceedings of
27th International Conference on Very Large Data Bases,
2001.

• Wolfgang Meier, eXist: An Open Source Native XML
Database, Web, Web-Services and Database Systems,
NODe 2002 Web and Database-Related Workshops,
LNCS 2593, 2003.

