
1

COMPSCI 732 FC §4. A declarative mapping language

A declarative mapping
language

• Motivations for a declarative style
• Abstract from underlying representations
• Abstract from implementation language
• Capture of intent of a mapping
• Able to generate mapping code

• VML (View Mapping Language)
• Bi-directional mapping specification

COMPSCI 732 FC §4. A declarative mapping language

Structure of VML

• inter_view
• Describes the 2 schemas being mapped between

• Versions being mapped between
• Type of information transfer required (read-only, read_write,

integrated)
• Whether this is a complete or partial mapping

• inter_class
• Describes sets of classes that need to combine for a mapping
• Three parts to each inter_class description

• Invariants: what must hold true for this mapping to proceed
• Equivalences: the mappings to perform
• Initialisers: values to be set when a new object is created

COMPSCI 732 FC §4. A declarative mapping language

inter_class example
inter_view(idm, integrated, view1, read_write, complete).

inter_class([person],[male],
invariants(gender = 'male'),
equivalences(name = name,

age = age,
inity = masculinity)

).

inter_class([person],[female],
invariants(gender = 'female'),
equivalences(name = name,

age = age,
inity = femininity)

).

person
name
age

male
masculinity

female
femininity

person
name
age
gender
inity

COMPSCI 732 FC §4. A declarative mapping language

inter_class classes
• Can specify one or more classes from each schema

• If one class then inter_class is applied to every object of that
class (as long as the invariants are satisfied)

• If more than one class then the cross product of objects is used
for the mapping

• For example:
• Class a has objects o1 and o2
• Class b has objects o3, o4, and o5
• inter_class([a, b], [c], …) evaluates the mapping for:

• [o1, o3], [o1, o4], [o1, o5], [o2, o3], [o2, o4], [o2, o5]
• group() function allows all objects of a class to be grouped
• E.g., inter_class([a, group(b)], [c], …) evaluates the mapping for:

• [o1, [o3, o4, o5]], [o2, [o3, o4, o5]]

2

COMPSCI 732 FC §4. A declarative mapping language

invariants

• Define the conditions under which an inter_class is
applicable (e.g., gender = ‘male’)
• Reduce the set of objects which are evaluated

• Each individual invariant may only reference attributes
and objects from one of the schemas.

• A constraining condition applied in one direction is a
default value in the opposite direction.
• E.g., when creating a ‘person’ object from one of type ‘male’ in

the previous example then the ‘gender’ attribute of the ‘person’
object is set to ‘male’.

COMPSCI 732 FC §4. A declarative mapping language

initialisers

• Assignment statements for attributes
• Only applicable to newly created objects

• Can call methods of new objects

initialisers(
idm_space_face.face_property = 'idm_space_face',
idm_material_face.face_property = 'idm_material_face',
idm_material_face.material=>type_of_material = 'idm_window_material',
idm_material_face.material=>type_of_window = 'idm_single',
idm_material_face.material=>window_subtype = 'clear',
fe_opening@create(idm_space_face.plane, idm_space_face.plane, 'space', 0, 0,

idm_space_face.min=>x, 0 - idm_space_face.min=>y,
idm_space_face.max=>x, 0 - idm_space_face.max=>y,
idm_material_face.material=>window_subtype)

)

COMPSCI 732 FC §4. A declarative mapping language

equivalences

• Equations, functions, and procedures to perform a mapping
• Ordering of specification is unimportant
• Types of equivalence equations include:

• Initialisers (e.g., gloss_factor = 90.0)
• Equality (e.g., name = planeName)
• Pointer equality (e.g., plane = fe_face_window)
• Simple equations (e.g., r*sin(theta) = y_coord)
• Pointer references (e.g., apex1=>x = apex2=>x
• Functions (e.g., exists(end_point=>z)
• Aggregate functions (e.g., sum(windows=>(height*width))) = area

COMPSCI 732 FC §4. A declarative mapping language

equivalences

• Types of equivalence equations include:
• List and array references (e.g., axes[2] = v_ref)
• List and array iteration (e.g., classified_by[] = material[].name)
• Conditional list and array iteration, for example,

bijection(spaces[]@class(‘idm_space’), spaces=>list[])
bijection(spaces[]@class(‘idm_roof’), roofs=>list[])

• Functions (e.g., list_splitter(vals, splitvals))
• Procedures (e.g., map_to_from(procA(), procB()))
• Method invocation (e.g., plane@view_plane = fe@create_view(name))
• Type conversion – implicit evaluation or cast explicitly
• Unit conversion – explicit modelling
• Temporary/intermediate attributes (e.g., _temp)

