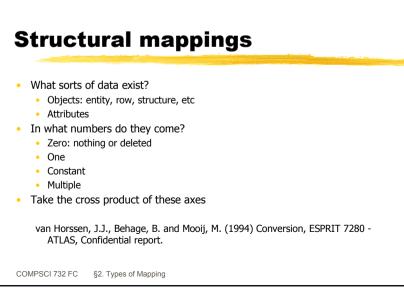
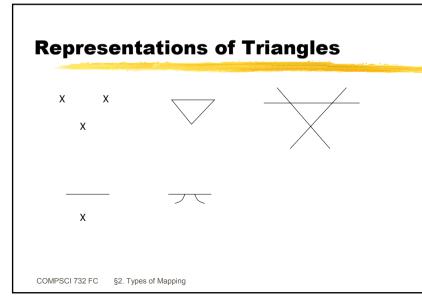
Types of Mapping


- Approaches to classifying mappings
 - Structural
 - Semantic
- Examples of mappings
- What does this tell us?


COMPSCI 732 FC §2. Types of Mapping

Approaches to classifying mappings

- Still a research problem
 - No complete understanding of 'hardness' of the problem
 - No complete understanding of descriptive power required for mapping languages for different tasks
 - Two viewpoints are to consider structures that can be mapped between, or semantic differences between structures
 - Neither gives a full picture of the problem
- · Many very simple mappings are impossible
 - E.g., width * depth = area
 - What types of mapping are not possible?

COMPSCI 732 FC §2. Types of Mapping

Structural mappings

	Object→Object	Attr→Attr	Object→Attr	Attr→Object
1→0	*	*		
0→1	*	*		
1→1	*	*	*	*
1→C	*	*	*	*
C→1	*	*	*	*
C→B	*	*	*	*
1→N	*			*
N→1	*		*	
C→N	*			*
N→C	*		*	
N→M	*			
COMPSCI 732 FC §2. Types of Mapping C, B are constant and N, M are variable				

$\textbf{Object} {\rightarrow} \textbf{Object examples}$

1→0	Fees object not mapped for academic record display		
0 →1	Building object created in CAD when mapped from VRML (just geometry)		
1→1	Course object in nDeva maps to a course object in Cecil		
1→C	Column object in CAD mapped to 6 surface objects in VRML viewer		
C→1	Book and publisher object mapped to a single BookInfo object		
C→B	Product, manufacturer, supplier mapped to catalog entry and sale point		
1→N	Polygon object mapped to a number of line objects		
N→1	All course taken objects mapped to a student GPA object		
C→N	Shopping basket and customer in broker mapped to many orders		
N→C	A day's sale objects mapped to a purchase order and a credit notice		
N→M	N points mapped to N(N-1) lines for a connected graph		

Attr→Attr examples

COMPSCI 732 FC §2. Types of Mapping

1→0	
0→1	
1→1	
1→C	
C→1	
C→B	
1→N	N/A
N→1	N/A
C→N	N/A
N→C	N/A
N→M	N/A

Object → Attr examples

1→0	N/A
0→1	N/A
1→1	Name object mapped to name attribute
1→C	Address object mapped to 4 address fields
C→1	2 point objects mapped to length
C→B	4 point objects mapped to perimeter and area
1→N	N/A
N→1	A month's credit card items mapped to a total expenditure field
C→N	N/A
N→C	A server's request log mapped to total requests and requests per hour
N→M	N/A

COMPSCI 732 FC §2. Types of Mapping

Attr→Object examples

1→0	N/A
0→1	N/A
1→1	
1→C	
C→1	
C→B	
1→N	
N→1	N/A
C→N	
N→C	N/A
N→M	N/A
COMPSCI	732 FC §2. Types of Mapping

Semantic mappings

- Examine the types of conflict that can occur
 - Categories of conflicts
 - Naming of objects and attributes
 - Structural differences
 - Data level differences

Batini, C., Lenzerini, M. and Navathe, S.B. (1986) A Comparative Analysis of Methodologies for Database Schema Integration, ACM Computing Surveys, 18(4), December, pp. 323-364.

Kim, W. and Seo, J. (1991) Classifying Schematic and Data Heterogeneity in Multidatabase Systems, IEEE Computer, 24(12), December, pp. 12-18.

COMPSCI 732 FC §2. Types of Mapping

Conflict categories

- Identical: everything is the same
- Equivalent
 - Where different but equivalent modeling constructs have been applied but the perceptions are still the same and are coherent
 - Behavioral: if the same set of answers to any given query can be obtained from all representations
 - Mapping: instances can be put on a 1-1 correspondence
 - Transformational: if a representation can be obtained by applying a set of atomic transformations that by definition preserve equivalence
- Compatible
 - Not identical or equivalent, but modeling constructs, designer perception and integrity constraints are not contradictory
- Incompatible
 - Contradictory because of the incoherence of the specification

Naming and data conflicts

- Naming conflicts
 - Homonyms: same name for different concepts (e.g., door height)
 - Synonyms: same concept described by different names
 - E.g., dwang and nog
- Data conflicts
 - Mismatched representations
 - Different units
 - Different precisions
 - Wrong data
 - Incorrect data entry
 - Obsolete data

Structural conflicts

- Type: same concept represented by different modeling constructs
 - Missing attributes
 - Missing but implicit attributes
 - Default value conflicts
 - Data type conflicts
 - Integrity constraint conflicts
- Dependency: group of concepts are related with different dependencies (e.g., 1-1 versus n-m)
- Key: different keys assigned to the same concept
- Behavioral: different insertion or deletion policies associated with the same class of object

COMPSCI 732 FC §2. Types of Mapping

What does this tell us?

- Generic categories of mappings we may face
- Generic types of conflicts that may occur
- Nothings about the hardness of particular mappings
 - E.g., how hard is it to map XML-based data, or EDI messages, or RDBMS, or...
- What else could we consider?

COMPSCI 732 FC §2. Types of Mapping