
COMPSCI 732 §10. Pattern Languages & EFPL 1

Pattern Languages & EFPL

• Look at two topics:
• Pattern Languages

• collections of patterns that used together lead to solutions for a
particular domain area

• Evolving Frameworks pattern language
• a pattern language for developing frameworks together with its

use in the evolution of MViews/JViews

COMPSCI 732 §10. Pattern Languages & EFPL 2

Pattern Languages
• “A pattern language defines a collection of patterns and the rules to

combine them into an architectural style. Pattern languages describe
software frameworks or families of related systems.”

• Cope, Patterns Home Page

• “A collection of patterns forms a vocabulary for understanding and
communicating ideas. Such a collection may be skillfully woven together
into a cohesive “whole” that reveals the inherent structures and
relationships of its constituent parts toward fulfilling a shared
objective. This is what Alexander calls a pattern language. If a pattern
is a recurring solution to a problem in a context given by some forces,
then a pattern language is a collective of such solutions which, at every
level of scale, work together to resolve a complex problem into an
orderly solution according to a pre-defined goal.”

• Appleton, “Patterns and Software: Essential Concepts and
Terminology”

COMPSCI 732 §10. Pattern Languages & EFPL 3

Pattern Languages
• Provide lexicon of patterns + “grammar” for threading them together

• useful patterns
• rules and orderings to apply them to achieve some goal

• “Good pattern languages guide the designer toward useful
architectures and away from architectures whose literary analogies
are gibberish or unartful writing.”

• Appleton, “Patterns and Software: Essential Concepts and Terminology”

• Illustrate with a pattern language for evolving frameworks developed
by Don Roberts and Ralph Johnson

• D. Roberts, R.Johnson “Evolving Frameworks”
http://st-www.cs.uiuc.edu/users/droberts/evolve.html

• In turn will illustrate application of this pattern language by our
experience in developing our MViews/JViews framework for
constructing multiple view graphical environments

COMPSCI 732 §10. Pattern Languages & EFPL 4

MViews/JViews
• Developed over close to 10 years

• initially from John Grundy’s PhD thesis

• Aim: to support design and implementation of visual environments
supporting multiple views with different representations

• Eg a CASE TOOL supporting various types of UML diagram

• Support for specification and implementation of:
• underlying shared repository
• information represented in views
• consistency management/mappings between views
• visual representation and manipulation of elements in the views

COMPSCI 732 §10. Pattern Languages & EFPL 5

CPRGs
• Underlying abstraction of MViews/JViews: change propagation and

response graphs
• discrete change description propagation along inter-object

relationships,
• response to and storage of these change descriptions

• Each item of data is represented by a graph component

• Components linked via relationships

• Components have attributes
representing state

• Relationships are themselves
components

dialog
name("name entry")

parts

edit fieldname("name") name("age") button
value("Cancel")value("Ok")init_value(init_name)

final_value(final_name)
init_value(20)
final_value(final_age)

interface([init_name,
final_name,...])

caption

value("Enter your name:") value("Enter your age:")

caption-of

edit field

caption-of

capti
on

button

position

position position position position

position position

COMPSCI 732 §10. Pattern Languages & EFPL 6

MViews/JViews
• Framework implementing CPRG model with support for constructing

multiple view - multiple representation design environments (~10 year
development)

• 3-layer architecture
• Base
• View
• Display

• Used to implement
many of our visual
tools & environments

• Eg Orion Mapper prototype

Display/
External
Layers

View
Layers

Base
Layer

class

class

generalisations

window

drawing_window text

text forms

features

class_icon

class_icon

gen_glue
class_text feature_text

text

drawing_window

window

external_class

External Interface
(Data/Event interchange)

External
Tool

...

feature

text forms

view rel. view rel.view rel. view rel. view rel.

COMPSCI 732 §10. Pattern Languages & EFPL 7

Example use: SPE/Serendipity

COMPSCI 732 §10. Pattern Languages & EFPL 8

Evolving frameworks
• The patterns in this pattern language are not design patterns in the

usual sense, rather they are patterns describing useful processes and
tasks that software developers perform when developing frameworks

• Names and temporal interaction of the patterns are shown in the
following figure

COMPSCI 732 §10. Pattern Languages & EFPL 9

3 Examples
• Context: You’ve decided to develop a framework for a domain

• Problem: How do you start designing a framework

• Forces:
• people work best by abstracting from examples
• developing examples can pay for the costs of developing

framework

• Solution: Develop three applications that you believe the framework
should help you build

COMPSCI 732 §10. Pattern Languages & EFPL 10

MViews/JViews application
• Initially developed a tool for constructing multiple view class

diagrams (Ispel)

• Then developed a programming environment for programming in
Snart, an OO Declarative Language (SPE)

• Then developed a multiple view ER modeller (MViews-ER)

COMPSCI 732 §10. Pattern Languages & EFPL 11

White-box Framework
• Context: You are building your second application
• Problem: How to choose between using inheritance or composition as the

basis for using the framework
• Forces:

• Inheritance gives strong coupling between components, but allows
reused components to be modified/extended

• Making a new class requires programming
• Composition is simpler, but you need to know in advance what can be

changed via parameterisation etc
• Compositions can be dynamic, inheritance is static

• Solution: use inheritance to build a white box framework by generalizing
from classes in the initial application

• Why: inheritance is most expedient way of allowing users to change code
in an OO environment - inherit and override. After using this approach for
a while it will become clearer as to what changes and what doesn’t

COMPSCI 732 §10. Pattern Languages & EFPL 12

MViews
• MViews was developed

by abstracting from
experience with Ispel

• Framework of classes
for multiple view
graphical and textual
environments

• Reused via inheritance
and overriding of
framework classes - ie
a white box framework

mv_component

update
type
relationhips
delete_component
attributes
add_component

mv_layer
components

mv_relationship

parents
establish
dissolve
children

mv_view_layer

mv_base_layer

mv_display_layer

hide
display

mv_graphic_view
edit_tools

mv_text_view

unparse
parse

mv_many_to_many

mv_one_to_many

mv_one_to_one

mv_layer_comp

mv_view_comp
view

mv_base_comp

mv_display_comp

hide
display

mv_graphic_comp
picture

mv_text_comp
text_form

mv_graphic_icon

mv_graphic_glue

mv_text_form

mv_view_rel

spe_class_icon_view
edit_tools

spe_gen_glue

spe_class_icon

class_kind
class_name

spe_feature_glue

feature_kind
feature_name

spe_class_view_text

spe_class_text_view

unparse
parse

spe_class_text

spe_base_class

class_kind
class_name

spe_base_feature

feature_kind
feature_name

spe_base_features

mv_base_comp

spe_base_gen

spe_feature_text

spe_class_icon_view_rel

spe_features_glue_view_rel

unique_id

COMPSCI 732 §10. Pattern Languages & EFPL 13

Component library
• Context: You are developing the second and subsequent examples based

on the white box framework
• Problem: Similar objects must be implemented for each problem the

framework solves. How do you avoid writing similar objects for each
instantiation of the framework

• Forces:
• Bare-bones frameworks require a lot of effort to reuse. Things that work out

of the box are much easier. A good library of concrete components makes a
framework easier to use

• Its hard to tell initially what components will be reused. Some will be problem
specific - some will be reused most times

• Solution: Start with a simple library of concrete components and add
extra ones as you need them.

• Add all components initially and later remove ones that never get reused.
These are still useful as they give examples of how to use the framework

• In MViews many concrete classes were implemented for use in SPE
• These were adapted or generalised for use in MViewsER

COMPSCI 732 §10. Pattern Languages & EFPL 14

Hot Spots
• Context: You are adding components to the component library
• Problem: As you develop applications similar code gets reused over and

over again. These code locations are called “hot spots”. How do you
eliminate this similar code?

• Forces:
• If changeable code is scattered it’s difficult to trace and change
• if changeable code is in a common place flow of control can be obscure

• Solution
• Separate code that changes from code that doesn’t - encapsulating

the changing code in objects. Composition can then be used to select
the appropriate behaviour rather than having to subclass

• use appropriate design patterns to encapsulate changes eg:
• algorithm changes => Strategy, Visitor
• Actions => Command
• Implementations => Bridge
• etc

COMPSCI 732 §10. Pattern Languages & EFPL 15

Pluggable Objects
• Context: You are adding components to your component library
• Problem: Most of the subclasses differ in trivial ways

(eg only one method overridden). How do you avoid having
to create trivial subclasses?

• Forces:
• New classes increase system complexity
• Complex sets of parameters make classes difficult to understand and

use
• Solution

• Design adapatable subclasses that can be parameterised with
messages to send, code to evaluate, colours to display, buttons to
hide, etc

• Check what it is that is changing between subclasses and make an instance
variable or whatever to hold the state associated with the change.

• MViews was ported to Java. At the same time many classes were turned
into JavaBeans components with settable properties for customisation

COMPSCI 732 §10. Pattern Languages & EFPL 16

Fine grained objects
• Context: You are refactoring your component library to make it more usable
• Problem: How far should you go in dividing objects into smaller ones
• Forces

• The more objects ion the system the harder it is to understand
• Small objects allow applications to be constructed by composing small

objects together so little programming is required
• Solution:

• Continue breaking objects up into smaller pieces until it doesn’t make
sense to divide further - ie decide what the “atomic” level is for this
domain

• Frameworks will ultimately be used by domain experts so tools will be
developed to compose objects automatically, so it’s more important to
avoid programming than to avoid lots of objects.

• In JViews, graphics components were reduced in scope to permit design by
composition. This led to the development of BuildByWire, a GUI element
construction tool

COMPSCI 732 §10. Pattern Languages & EFPL 17

Black Box Framework
• Context: Your are developing pluggable objects by encapsulating hot

spots and making fine-grained objects
• Problem: How to choose between using inheritance or composition as the

basis for using the framework?
• Forces: as per White Box framework
• Solution:

• Use inheritance to organise your component library and composition
to combine components into applications. Inheritance taxonomies
support part browsing; composition allows for maximum flexibility.

• A black-box framework is one where you can reuse components by
plugging them together and not worrying about how they accomplish
their individual tasks. In contrast, white-box frameworks require an
understanding of how the classes work so that correct subclasses can be
developed.

• JViews evolved into a black box framework, with some parts (notably
GUI development) more black box than other parts

COMPSCI 732 §10. Pattern Languages & EFPL 18

Visual Builder
• Context: You have a black box framework. Applications are made by

composing objects. Behaviour now determined entirely by
interconnection of components. Application is now in two parts:

• Script to connect parts and turn them on
• Behaviour of parts (provided by framework)

• Problem: the connection script is very similar between
applications. How do you simplify its construction?

• Forces
• Compositions are complex and difficult to understand
• Building tools is costly, but domain experts don’t want to be

programmers

• Solution:
• Construct a visual language and environment to construct the script.

This generates the code for the application

COMPSCI 732 §10. Pattern Languages & EFPL 19

JComposer and BuildByWire
• Developed two visual tools for use in constructing Jviews-based

environments:

• JComposer: a tool to visually define most of the “back end” structure
• further structure filled in by programming using class templates

generated by JComposer

• BuildByWire: a tool to visually define the GUI front end
• defines GUI elements (including interaction points and

behaviour) and GUI editing windows
• generates components that can be used by JComposer to

construct complete applications

COMPSCI 732 §10. Pattern Languages & EFPL 20

BBW and JComposer

COMPSCI 732 §10. Pattern Languages & EFPL 21

Applications
• Many applications built using JViews

• Eg Serendipity, a process modelling environment

COMPSCI 732 §10. Pattern Languages & EFPL 22

Language Tools
• Context: You have created a builder

• Problem: Visual builders create complex composites. How do you inspect
and debug these

• Forces:
• Existing tools are inadequate as they don’t provide information at

the right abstraction level
• Building good tools takes time

• Solution:
• Create specialised debugging and inspection tools

COMPSCI 732 §10. Pattern Languages & EFPL 23

JVisualise
• JVisualise allows execution state of JViews-based systems to be

queried, visualised, and dynamically modified

• Visualisations use abstraction levels equivalent to those used by the
JComposer tool

COMPSCI 732 §10. Pattern Languages & EFPL 24

Extensions to EFPL
• Our experience with developing MViews/JViews has led us to propose

several extensions to EFPL (see our paper):
• Platform migration

• Deals with need to change underlying implmn platforms as
lifetime of a framework extends beyond typical impmn
technology cycle

• Integrating applications
• Deals with need/desire to integrate together multiple

applications developed using the framework and third party
applications

• Reflective framework and Self Extending Framework
• Dealing with the need to be able to extend the framework “on

the fly” using a meta model approach (cf Pounamu)

• The new patterns were workshopped at KoalaPlop 2001

COMPSCI 732 §10. Pattern Languages & EFPL 25

Application to other frameworks
• Eclipse

• Has a mixture of whitebox and blackbox architectures
• Has handled integrating applications as core business and has aspects of

reflective and self extending framework
• Some development of visual builder tools (eg PDE) but this is rudimentary.
• Expect to see significant energy going into visual builder and language support

tools to make plugin construction/debugging easier

• Argo
• Very similar to Eclipse, but arguably at a less mature stage
• Momentum of development lost with the rise of Eclipse

• Pounamu
• A further application of the platform migration pattern to MViews/JViews
• Rich set of visual builder tools, very much black box

COMPSCI 732 §10. Pattern Languages & EFPL 26

Summary
• Framework programming uses a different style than does conventional

software development
• becoming more the standard approach with the proliferation of

application frameworks

• Pattern Languages are collections of patterns with rules for combining
them to solve problems in a particular domain

• the “Language” is not a language in the usual programming language
sense

• Evolving frameworks is a useful Pattern Language for developing a new
framework

• we didn’t know about this pattern language when developing
MViews/JViews, but in retrospect we used it almost exactly

