
Android Security

Giovanni Russello
g.russello@auckland.ac.nz

What will you learn?

• The Smartphone phenomena
• Overview of the Android Middleware
• Android Security Model
• Security issues and some approaches

What is a Smartphone

• Handset with full-fledged computing capabilities
• Several vendors with different OS
• Support for third-party applications
• Extended sensing capability

Major Marker Players

• Android – Google
• Symbian – Nokia
• Research In Motion (RIM) – BlackBerry
• iOS – Apple
• Windows Phone 7 – Microsoft

The Smartphomania

• Total Smartphone sales 2011: 472 million units
• Only in 2011 (4q): 149 million units
• Increase from the same period in 2010: 47.3%
• Of these devices, 76 million units are Android

phones!

Source Gartner
http://www.gartner.com/it/page.jsp?id=1924314

Worldwide Smartphone Sales
4Q10 vs 4Q11 (Thousand of units)

0.00

10,000.00

20,000.00

30,000.00

40,000.00

50,000.00

60,000.00

70,000.00

80,000.00

Android iOS Symbian RIM Bada Microsoft Others

4Q11

4Q10

Worldwide Smartphone Sales
4Q10 vs 4Q11

30%

16% 32%

15%

2% 3% 2%

51%

24%

11%

9%

2% 2% 1%

Android

iOS

Symbian

RIM

Bada

Microsoft

Others

What is on stake?

Smartphones have been target of attacks
In the first half of 2011, malware contaminated app

grew from 80 to 400 (Android Marketplace).
In terms of mobile users, this means that between

a half million and a million users were exposed to
malware only in the first half of 2011

Update Attack: clean apps that as grow in
popularity are updated with malware

Security Threats

• Privacy violations
– Unauthorised access to location, email, contacts …

• Money loss
– Unauthorised sending of SMS
– Banking Trojan (SpyEye, ZeuS)

What is it done?

• iPhone
– Closed source, code signing and inspection

• BlackBerry
– Closed source, code signing and certification

• Android
– Open source, code signing, code inspection, and permission

framework
• MeeGo

– Open source, RBAC security framework
• Windows 7 Phone

– Closed source, code signing and inspection

Google Android

• First Android handset released in
2008

• Open source
• Strict Sandboxing
• Java Dalvik VM
• Java Apps
• Lightweight code signing
• Permission Framework
• App Market (more 100K apps)

Android View

Android is a set of
programs for mobile
devices that includes
operating system,
middleware and
core applications

An
dr

oi
d

M
id

dl
ew

ar
e

Applications

Core platform:
• Phone, Browser,
Email…
Third-party:
• Applications that are
produced by third-party
developers

Application Framework

Core platform services:
• Activity, Package,
Window and Content
Providers
Hardware services:
• Telephony, Location,
Bluetooth, WiFi, USB,
and Sensor Services

Android Native Libraries

Used for:
• Window management
• 2D and 3D graphics
• Media codecs
• Font rendering
• SSL
• The core of datastorage
• The core of web browser
• Bionic libc

Android Runtime

Core Libraries:
• Data structures, Utilities,
File access, Network
access, and Graphics
Dalvik VM:
• Provides application
portability
• Supports multiple
instances
• CPU and memory
optimized to run on mobile
devices

Linux Kernel

Linux features:
• Hardware abstraction
layer
• Memory management
• Process management
• Security module
• Networking
Android enhancements:
• Power management
• Binder IPC
• Logger

Android App Model

• Each application runs within an instance of a
Dalvik VM (DVM)

• Each DVM is mapped in the Linux Kernel with a
unique user id

• Android supports Inter-process communication
(IPC)

• A reference monitor mediates IPC calls

Android App Model

• Applications are formed of components
– Activities
– Services
– Content Providers
– Broadcast Receivers

Inter-Component Communications

Each Component exposes a specific API for communications
– Services expose Start, Stop, Bind as actions that other application

can invoke through Intents

Enforcement

• Each App comes with a Manifest file
(AndroidManifest.xml)

• Uses Permission: the permission that an
application requires. This must be granted by the
user at installation time.

• Permission: definition of permissions to protect
part of this application

• All-or-nothing model!

Android MAC Model

Android Middleware

Activity Manager

Reference Monitor

Protection Domain

Android Middleware

Activity Manager

Reference Monitor

System Sandbox

Android
Apps

S1 S2

P1 P2

S1 = Location Service

P1 = LOCATION_PERMISSION

Assignment of Permissions

Android Middleware

App A

Sandbox

S

C B

A

Activity Manager

Reference Monitor

System Sandbox

Android
Apps

S1 S2

P1 P2

Install Time: Uses Permission = P1?

Using the Permission

Android Middleware

App A

Sandbox

S

C B

A

Activity Manager

Reference Monitor

System Sandbox

Android
Apps

S1 S2

P1 P2

P1

Reference Monitor

Android Middleware

App A

Sandbox

S

C B

A

Activity Manager

Reference Monitor

System Sandbox

Android
Apps

S1 S2

P1 P2

P1

Mandatory Access Control

• Once the labels are assigned neither the
application nor the user can change them

• Applications cannot delegate their permissions
• BUT components can expose interfaces that

other applications can invoke
• This makes difficult in standard Android to

control information flow (can lead to severe
attacks)

Permission Protection Level

• “Normal Permissions” are assigned by default to
apps

• “Dangerous Permissions” require user
confirmation

• “Signature Permissions” are granted to apps
signed by the same developer

• “System or Signature Permissions” are granted
only to special apps installed in the data/system
folder (i.e., apps signed by Google)

Security Refinements

Android Security Model allows developers to refine
the security domain of their applications

– Through the standard mechanism using the Manifest
– Programmatically by using special parameters in the

API

Bad move!!! Make everything murky and worst of
all by default access is granted!!

Public vs Private Components

• By default any components that is not assigned a
permission is public

• Developers can declare a component private by
setting the exported flag to false in the
manifest file

• Private components can only be accessed by
other components in the same app

• Android can also infer if a component is private
by other declarations in the manifest file (Do you
trust it??)

Implicitly Open Components

• Public components have all their interface
accessible to any other components

• Developers must explicitly assign permission
labels to protect those interfaces

Broadcast Intent Protection

• When an intent is broadcasted, all installed apps
are able to listen to those events

• This mechanism can be exploited by malicious
apps that are listening for a certain event to
happen

• It is possible to protect the intent
programmatically:

sendBroadcast(intent, perm.MyPerm)
This means that the Manifest does not provide a
complete view of app security

Service Hooks

• Android does not support a fine-grained
mechanism to protect the interface of a Service

• Once a component has the permission label to
access a service, the component can start, stop,
bind the service

• Again programmatically it is possible to refine
this mechanism by doing some extra checking at
the code level, putting security policies in the
app code

• Not a good security and software eng. practice!

Delegation

• Pending Intents that delegate to another app the
parameters and time when an action is executed
– Location service notifies registered apps when

location changes
• URI delegation where an app delegates a

component to perform an action on a resource
– The app provides a capability to the component for

performing the action
• Per se, there is nothing wrong with delegation.

However, it deviates from the main MAC model

Flexibility is not always good

• The Android security model is very flexible
• However, it starts from the simple MAC model

and becomes very messy
– Source code options
– Open default policy
– Delegation
– No control for information flow

Security Extensions for Android (as
for June 2011)

Saint
Apex

CRePE

QUIRE

Kirin

TaintDroid Saint
Apex

QUIRE

Reference Monitor Installer DVM

An
dr

oi
d

M
id

dl
ew

ar
e

Linux Kernel

SELinux

XManDroid XManDroid
Paranoid Android

Paranoid Android

AppFence

MockDroid

TISSA

Fine-grained Security Policy

• Saint (ACSAC ‘09)
– Allows app developers to protect their applications

from being misused
• APEX (ASIACCS ‘10)

– Circumvent the All-or-Nothing approach of Android
permission granting

• Porscha (ACSAC ‘10)
– Support for DRM-like policies for phone data

• CRePE (ISC ’10)
– Enforcement of context-related policies

Data Filtering and Tainting

• MockDroid (HotMobile ‘11)
– Limiting the access to the data

• TISSA (Trust ‘11)
– Substituting the reply from content providers

• TaintDroid (OSDI ’10)
– Labelling of data for preventing data leakage

Privilege Escalation Attacks

“An adversary tries to escalate privileges to
get unauthorised access to protected
resources”

• Confused deputy attack: leverage the
vulnerability of a benign application

• Colluding attacks: more applications collaborate
to get an objectionable set of permissions

Android Middleware

App A

Sandbox

S

C B

A

Activity Manager

Reference Monitor

System Sandbox

Android
Apps

S1 S2

P1 P2

Privilege Escalation Attacks

Install Time: Uses Permission = P1?

Android Middleware

App A

Sandbox

S

C B

A

Activity Manager

Reference Monitor

System Sandbox

Android
Apps

S1 S2

P1 P2

P1

Privilege Escalation Attacks

Android Middleware

App A

Sandbox

S

C B

A

Activity Manager

Reference Monitor

System Sandbox

Android
Apps

S1 S2

P1 P2

P1

Privilege Escalation Attacks

Android Middleware

App A

Sandbox

S

C B

A

Activity Manager

Reference Monitor

System Sandbox

Android
Apps

S1 S2

P1 P2

P1

App B

Sandbox

S

C B

A

Privilege Escalation Attacks

Android Middleware

App A

Sandbox

S

C B

A

Activity Manager

Reference Monitor

System Sandbox

Android
Apps

S1 S2

P1 P2

P1

App B

Sandbox

S

C B

A

Privilege Escalation Attacks

Android Middleware

App A

Sandbox

S

C B

A

Activity Manager

Reference Monitor

System Sandbox

Android
Apps

S1 S2

P1 P2

P1

App B

Sandbox

S

C B

A

Privilege Escalation Attacks

Protection against
Privilege Escalation

QUIRE (USENIX Security Symposium ‘11)
• Effective against confused deputy attacks
• Tracing of IPC chain to check if all apps have the

right to access a resource
However

• It requires that apps have to use modified API
• It does not solve the problem of colluding apps

Protection against
Privilege Escalation

AppFence (TR 11 Uni Washington and MS
Research)

• Based on TaintDroid for taint capability
• It supports data shadowing and protects from

data exfiltration
However

• Effective only against confused deputy attack

Protection against
Privilege Escalation

XManDroid (TR 11)
• Real-time IPC monitoring
• System state of the app communications for

potential spread of privileges
However

• No control outside the IPC channels (i.e. Internet
access)

What is missing

• No modifications to Android API
• No trust on apps
• Control over IPC and system-level calls (internet)
• Data filtering capabilities
• Tuneable

That is why we came up with

…Yet Another Android Security Extension

YAASE Main Features

A Policy-based System for
• Controlling Information Flow
• Fine-grained Data Filtering

YAASE Architecture

App
DVM

TaintDroid

Settings Provider

Socket/OSFileSystem
Policy

Provider

Action
Library

Labelling
Store

P
E

P

Location Provider

Account Provider

PEP

Li
bB

in
bd

er

PDP

Internet Logs

Camera

Storage

JFL

User Settings
Interface

Content Provider

App Installer

Policy-based AC Terms

• A policy is a rule that governs the behaviour of a
system

• PEP stands for Policy Enforcement Point
– It is responsible for intercepting the requests and

enforcing the access control decisions

• PDP stands for Policy Decision Point
– It is responsible for evaluating policies and coming up

with a decision

• Policy Provider is the repository where policies
are stored

YAASE Policy Language

PolicyName:

 Requester can do operation on Resource
 [have to perform action]
 handle dataLabelExpression

YAASE Policy Language

PolicyName:

 Requester can do operation on Resource
 [have to perform action]
 handle dataLabelExpression

By default, if no policy is specified no action is
granted!

Example of a Privilege Escalation

• FeedMe: A news feed app requiring access to
internet

• NavApp: A navigation app requiring access to
GPS

Policies for Apps

PolFeedMe:

 FeedME can do send on Internet
 handle “NoLabels”

PolNavApp:

 NavApp can do access on GPS
 handle “FineLocation”

Restrict Approach

YAASE

NavApp

Sandbox

S

C

A

System Sandbox

Android
Apps

GPS NET

P1 P2

P1

FeedMe

Sandbox

S A

P2

Policy
Provider

PEP

PDP

Access to
NavApp

Restrict Approach

YAASE

NavApp

Sandbox

S

C

A

System Sandbox

Android
Apps

GPS NET

P1 P2

P1

FeedMe

Sandbox

S A

P2

Policy
Provider

PEP

PDP

Restrict Approach

YAASE

NavApp

Sandbox

S

C

A

System Sandbox

Android
Apps

GPS NET

P1 P2

P1

FeedMe

Sandbox

S A

P2

Policy
Provider

PEP

PDP

Restrict Approach

YAASE

NavApp

Sandbox

S

C

A

System Sandbox

Android
Apps

GPS NET

P1 P2

P1

FeedMe

Sandbox

S A

P2

Policy
Provider

PEP

PDP

NO ACCESS

Relaxed Approach

YAASE

NavApp

Sandbox

S

C

A

System Sandbox

Android
Apps

GPS NET

P1 P2

P1

FeedMe

Sandbox

S A

P2

Policy
Provider

PEP

PDP

PEP

Relaxed Approach

YAASE

NavApp

Sandbox

S

C

A

System Sandbox

Android
Apps

GPS NET

P1 P2

P1

FeedMe

Sandbox

S A

P2

Policy
Provider

PEP

PDP

D:FL

Relaxed Approach

YAASE

NavApp

Sandbox

S

C

A

System Sandbox

Android
Apps

GPS NET

P1 P2

P1

FeedMe

Sandbox

S A

P2

Policy
Provider

PEP

PDP

INTERNET

D:FL

Enforced Policy

PolFeedMe:

 FeedME can do send on Internet
 handle “NoLabels”

Relaxed Approach

YAASE

NavApp

Sandbox

S

C

A

System Sandbox

Android
Apps

GPS NET

P1 P2

P1

FeedMe

Sandbox

S A

P2

Policy
Provider

PEP

PDP

INTERNET

D:FL NO ACCESS

Who is defining the Policies

• Policies Generation should be painless for the
user

• Extending the Android Installer to extract from
the manifest file information for policy
generation

• User can any time change policy settings

Final Remarks

• Standard Android Security framework is
insufficient!

• Plethora of security extensions have been
performed

• Now it is time that Google starts to take some
actions

	Android Security
	What will you learn?
	What is a Smartphone
	Major Marker Players
	The Smartphomania
	Slide Number 6
	Slide Number 7
	What is on stake?
	Security Threats
	What is it done?
	Google Android
	Android View
	Applications
	Application Framework
	Android Native Libraries
	Android Runtime
	Linux Kernel
	Android App Model
	Android App Model
	Inter-Component Communications
	Enforcement
	Android MAC Model
	Protection Domain
	Assignment of Permissions
	Using the Permission
	Reference Monitor
	Mandatory Access Control
	Permission Protection Level
	Security Refinements
	Public vs Private Components
	Implicitly Open Components
	Broadcast Intent Protection
	Service Hooks
	Delegation
	Flexibility is not always good
	Security Extensions for Android (as for June 2011)
	Fine-grained Security Policy
	Data Filtering and Tainting
	Privilege Escalation Attacks
	Privilege Escalation Attacks
	Privilege Escalation Attacks
	Privilege Escalation Attacks
	Privilege Escalation Attacks
	Privilege Escalation Attacks
	Privilege Escalation Attacks
	Protection against �Privilege Escalation
	Protection against �Privilege Escalation
	Protection against �Privilege Escalation
	What is missing
	That is why we came up with
	YAASE Main Features
	YAASE Architecture
	Policy-based AC Terms
	YAASE Policy Language
	YAASE Policy Language
	Example of a Privilege Escalation
	Policies for Apps
	Restrict Approach
	Restrict Approach
	Restrict Approach
	Restrict Approach
	Relaxed Approach
	Relaxed Approach
	Relaxed Approach
	Enforced Policy
	Relaxed Approach
	Who is defining the Policies
	Final Remarks

