

A Trusted Biometric System L. Chen, S. Pearson, A. Vamvakas, 'A Trusted Biometric System', Technical Report HPL-2002-185, HP Laboratories Bristol, 12 pp., 2002

Paul Schmieder

University of Auckland

21. September 2007

- Functioning
- Overview

2 Comments

- Appreciative comments
- Critical comments

Functioning Overview

Functioning

how does it work?

- usage of a hardware-based tamper-resistant trusted chain
- consists of Trusted Platforms, Trusted Biometric Readers and Smart Cards
- different from other systems because of combination of user authentication with entity integrity checking

Outline Summary Functioning Overview

Threads

- malicious platform
- malicious biometric reader
- interception of communication between platform and biometric reader
- interception of communication between smart card and platform

Outline Summary

Functioning Overview

Overview

Appreciative comments Critical comments

Appreciative comments

advantage of integrity check

- secure feature to check the status of devices
- fairly simple to implement

introduced mechanismn

• provide possible implementation

Appreciative comments Critical comments

Appreciative comments

advantage of integrity check

- secure feature to check the status of devices
- fairly simple to implement

introduced mechanismn

provide possible implementation

Appreciative comments Critical comments

Appreciative comments

advantage of integrity check

- secure feature to check the status of devices
- fairly simple to implement

introduced mechanismn

provide possible implementation

Appreciative comments Critical comments

Critical comments I

authentication process

- attempt to verify the digital identity of the sender (wikipedia)
- authentification between every entity
- not explained how

- different PCs + TPRs = different checksums
- bunch of checksums hold by Smart Card
- increased possibility of "false positive match"

Appreciative comments Critical comments

Critical comments I

authentication process

- attempt to verify the digital identity of the sender (wikipedia)
- authentification between every entity
- not explained how

- different PCs + TPRs = different checksums
- bunch of checksums hold by Smart Card
- increased possibility of "false positive match"

Appreciative comments Critical comments

Critical comments I

authentication process

- attempt to verify the digital identity of the sender (wikipedia)
- authentification between every entity
- not explained how

- different PCs + TPRs = different checksums
- bunch of checksums hold by Smart Card
- increased possibility of "false positive match"

Appreciative comments Critical comments

Critical comments I

authentication process

- attempt to verify the digital identity of the sender (wikipedia)
- authentification between every entity
- not explained how

- different PCs + TPRs = different checksums
- bunch of checksums hold by Smart Card
- increased possibility of "false positive match"

Appreciative comments Critical comments

Critical comments II

feasibility with Smart Card

- holds information; e.g. biometric code, keys
- how inform user about 'failure'
- special value only know by the user

Do you think displaying a special value or picture is a good method to indicate whether the system is trusted?

Or do you maybe have an even better idea?

State of art of biometric recognition systems

Measurements of biometric recognition systems

• false accept rate (FAR) - probability of positive match between not identical datasets

٩	false reject	rate (FRR) -	probability of	negative match	between	identical	dataset
---	--------------	--------------	----------------	----------------	---------	-----------	---------

Biometrics M	FAR M	FRR 🖂	Subjects M	Comment
Face	1 %	10 %	37437	Varied lighting, indoor/outdoor
Fingerprint	1 %	0.1 %	25000	US Government operational data
Hand geometry	2 %	0.1 %	129	With rings and improper placement
Iris	0.94 %	0.99 %	122 <mark>4</mark>	Indoor environment
Iris	0.0001 %	0.2 %	132	Best conditions
Keystrokes	7 %	0.1 %	15	During 6 months period
Voice	2 %	10 %	310	Text independent, multilingual

tamper-resistant

tamper-resistant

• being protected against deliberate application altering

smart card checks integrity

integrity check

- integrity value of software is generated (checksum or message footprint)
- generated integrity value is compared with the stored integrity value

way of checking

- communication protocol includes interrogation of BR and TPM integrity status
- based on public key infrastructure and symmetric cryptographic

Trustness

plastic cards

my necessary card collection

- University of Auckland
- UoA Access Card third floor
- UoA Access Card fourth floor
- flat access
- bus
- driver license
- VISA
- Eftpos

my useful card collection

- SubCard (Subways)
- one Card (Foodtown)
- GoCall Telephone
- AA member
- German EC
- BBH

