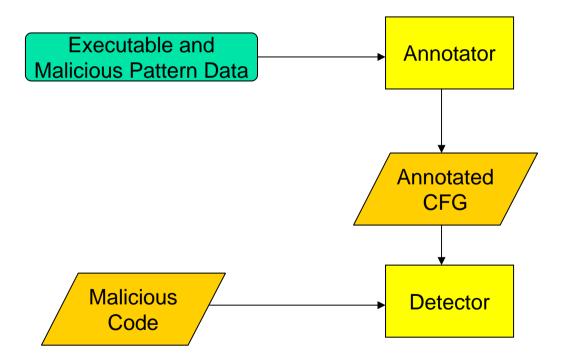
Static Analysis of Executables to Detect Malicious Patterns

Mihai Christodorescu and Somesh Jha (University of Wisconsin, Madison)


12th USENIX Security Symposium

Presenter: Brett Lomas

The Problem

- Given
 - a malicious sequence of instructions
- Find
 - a sequence of instructions in some obfuscated code which is semantically equivalent.

Architecture

Critical Comments

Prototype speed

- Scanning a 1MB benign program took approximately 16 minutes
 - Annotator took over 13 minutes
 - Detector took over 2 minutes
- People get annoyed at the speed of current virus scanners!
- Paper authors highlighted some execution times as "unacceptably large"

Critical Comments cont...

- They obfuscated examples of malicious code
 - Then used this for evaluating to effectiveness of their prototype
 - Reported FP and FN rate zero
 - No external sample of malicious code and its obfuscations
 - How useful are the results in the real world?

Critical Comments cont...

- Only examined 'common obfuscation techniques'
 - E.g. Dead Code Insertion, Code Transposition, Register Reassignment and Instruction Substitution
- No external corroboration of 'common'
 - One cannot assess effectiveness of this method objectively without.
- What about Opaque constructs to obfuscate control flow (Collberg et al.) for example?
 - Paper dismisses as not 'common'

Appreciative Comments

- Highlighted the inability of commercial scanners to handle simple obfuscations
 - All sample scanners failed
 - Nop insertion
 - Code transposition
 - What is the risk?

Discussion

If the speed was acceptable, is this a viable idea for the defense against viruses/Trojan horses etc?