
Static Analysis of Executables
to Detect Malicious Patterns

Mihai Christodorescu and Somesh Jha
(University of Wisconsin, Madison)

12th USENIX Security Symposium

Presenter: Brett Lomas

The Problem

Given
a malicious sequence of instructions

Find
a sequence of instructions in some
obfuscated code which is semantically
equivalent.

Architecture

Malicious
Code

Executable and
Malicious Pattern Data

Annotator

Annotated
CFG

Detector

Critical Comments

Prototype speed
Scanning a 1MB benign program took
approximately 16 minutes

Annotator took over 13 minutes
Detector took over 2 minutes

People get annoyed at the speed of current
virus scanners!
Paper authors highlighted some execution
times as “unacceptably large”

Critical Comments cont…

They obfuscated examples of malicious
code

Then used this for evaluating to
effectiveness of their prototype
Reported FP and FN rate zero
No external sample of malicious code and
its obfuscations
How useful are the results in the real
world?

Critical Comments cont…
Only examined ‘common obfuscation
techniques’

E.g. Dead Code Insertion, Code Transposition,
Register Reassignment and Instruction
Substitution

No external corroboration of ‘common’
One cannot assess effectiveness of this method
objectively without.

What about Opaque constructs to obfuscate
control flow (Collberg et al.) for example?

Paper dismisses as not ‘common’

Appreciative Comments

Highlighted the inability of commercial
scanners to handle simple obfuscations

All sample scanners failed
Nop insertion
Code transposition

What is the risk?

Discussion

If the speed was acceptable, is this a
viable idea for the defense against
viruses/Trojan horses etc?

