On the (Im)possiblility of
Obfuscating Programs

A discussion of the 2001 paper by Barak,
Goldreich, Impagliazzo, Rudich, Sahali,
Vadhan, and Yang.

Presented by Nicolai Moles-Benfell.
CS725



Summary of results

o Barak et al 2001 paper is a theoretical proof of
the impossiblility of a perfect obfuscator capable
of obfuscating all Turing machines (programs).

e Their proof relies
— On the existence of one way functions.
— And their model and definition of an obfuscator.



What 1s Obfuscation?

An obfuscator is an algorithm that can be viewed as a compiler, that
takes a program P as input and ouput’s a different program O(P).

Generally the goal of O(P) is to make understanding P difficult
and/or time consuming.

Barak et al chose a stricter definition of obfuscation:
— O(P) should behave as a black box.
* No information about P should be learnable from O(P),

except that which is observable from studying the
Input/Output of O(P).

— O(P) should have approximately the same functionality and time
complexity (running time) as P.



What Is a Black Box?

—— = observable behavior/properties

* Programs have observable properties, some are important others are
not, a black box obfuscator would hides all properties and behavior.

*By adopting the black box model it is then possible to prove the absolute
security of a obfuscation scheme.



One way functions

« One way functions are easy to compute, easy
but intractable to reverse.

« Example (Integer factorization):

— It is computationally easy to multiple any
two numbers, 19 x 47 = 893

— but if these numbers are (large) primes,
then factorizing them is computationally
difficult (no efficient algorithm is believed
to exist) S o -

893 =?x7
X hard

* Unless the party computing the inverse of the problem has
additional information specific to the problem, a ‘trap door’.

« A trap door allows the inverse of the problem to be easily computed.



Barak et al Main Results

e Qutline of their proof:

— They show that if one-way functions exist then there exists programs that
can not be obfuscated.

e Why?
— Let P compute the inverse of a one-way function, with the use of a trap
door.

— Then the trap door (a hard coded value) is a distinctive property of P,
that the obfuscator would need to remove from O(P).

— But by removing it,
 O(P) is no longer able to efficiently compute the inverse of the
problem

» therefore does not have the same functionality as P, and fails to
meet Barak’s definition of an obfuscator.

» Therefore universal (black box) obfuscators can not exist.



Appreciative Comment?

e Barak et al describe a number of interesting
applications of a black box obfuscator (if it were

to exist).

e For Example:

— Transforming Private key encryption into Public key
encryption (secure Digital Rights management)



Private Key Cryptography

- Private Key cryptography is computationally inexpensive

-Security (should be) dependent on the secrecy of the key.

- But need a method to securely share the key with other

parties.

>

Plaintext

Cipher (P)

i

Private Key

Cipher text

<>

Cipher (P)

]

Private Key

>

Plaintext



Public Key Cryptography

- Public Key cryptography is computational expensive, and
employees one-way functions.

- And uses two keys, one public and the other private.

- The public key is published so anyone can encrypt data, but
only the trapdoor (the secret key) can be used to decrypt.

>

Plaintext

Cipher (P)

i

Public Key

Cipher text

ZTTTITL

Cipher (P)

]

Private Key

>

Plaintext



Digital Rights management

« If a Black Box Obfuscator existed, then hardwire the
secret key into decryption algorithm of a private key
cipher, and obfuscate the two, to create O(Py)

e Why?

— Because By encrypting the digital media with a customers private key,
only the obfuscated program O(P,) can be used to view the media.

Acme Online Music

Customer

Cipher text

m=—=>| Cipher (P) |J*ormamey

Plaintext I

Cipher (P)

Private Key

]

Private Key

>

Plaintext

O(Pyx)



Critical Thoughts

On face value these results appear disappointing for
software obfuscation.

But they arise from defining and modeling obfuscation as
a black box.

The impossibility of a universal black box obfuscator
limits some theoretical applications.

But in practice several more important guestions araise
— What proportion (or class) of programs do the results apply to?

— Is there a more practical model of obfuscation then the Black box
paradigm? For example that might allow non sensitive
information to be leaked from the obfuscated code?




The other Appreciative Comment

o Barak et al point out that their approach to
obfuscation is theoretical, there might exist
heuristically strong methods for commercial use!



Questions

?



