
Protecting Mobile Agent against Malicious Hosts Using A

Time-Limited Blackbox Approach
Xiaodong yang

Department of Computer Science
The university of Auckland

Xyan011@ec.auckland.ac.nz
Student ID: 2553127

Abstract
A mobile agent is autonomous software that can achieve a sequence of tasks
automatically, such as a ticket booking system. The benefit of using it is to increase
the network performance and utilization. As the Mobile Agent performs an important
role in the e-commence world now days, the security problems rise rapidly: protecting
mobile agent against malicious hosts; protecting mobile agent against others agent;
protecting the hosts against malicious agent; protecting hosts against malicious agent;
and protecting hosts against untrustworthy third party. This paper will focus on
protecting mobile agent against malicious hosts, address the possible threats and
describe the way to implement the solution. The approach to solve the problem is
using a time- limited blackbox. A Time-limited blackbox is a new agent generated
from the original agent. And it will exist in a range of time and does the same job as
the original agent did. The idea is during the time the time-limited blackbox exist, it is
nearly impossible for the attacker to analyses and modifies it, so the new agent is just
like a blackbox for the outside world. To achieve blackbox approach, obfuscation
technique is used. Obfuscation mess up the program, so that the program hard to
comprehend.

1. Introduction
A Mobile agent is a program that can be distributed to hosts,and achieves some goals.
It has become a favored technique in the business world, because it can increase
network performance and utilization; finish tasks independently; and satisfy the
customer’s requirement. As a result of this usage, security problems are an important
issue. The most difficult problem is how to protect the mobile agent against the
malicious host. It’s Generally believed that it is impossible for protecting the mobile
agent against the malicious host. The reason for this is that the mobile agent will run
in the remote host, uses the resources of the remote host. Therefore all its actions are
under control by the remote host. This paper will exam one of the approaches that trys
to stop the malicious host from attacking mobile agents. The approach uses a
blackbox idea and adds a time-limited property.
The rest of the paper is constructed as following sections: section 2 will talk about the
background of the mobile agent and mobile agent system, the structure of mobile
agent, and how does it work? Also introduce some existing approaches. Section 3 will
talk about malicious host, and describe an attack model of malicious host. Section 4
will illuminate all the possible attacks issued by malicious host to the mobile agent.
Section 5 will represent the time-limited blackbox approach, and explain how the
obfuscation algorithm works. Section 6 will have a look if the scheme satisfies the
requirements of security and if the scheme can stop the possible attacks. Section 7 is
some comment. Section 8 is conclusion.

2. Background
Since the first forms of distributed computing appeared in the late 1980’s, there exist
three major technologies: message passing system (MPS), remote procedure call
(RPC) and distributed object system (DOS) [NE]. The mobile agent is a new
technique, and it has three advantages over the previous three technologies: client
customization, migration and autonomy. Under the approaches RPC and DOS, such as
OMG CORBA, Microsoft DCOM, the program in the client side can access the
remote functions or objects through interfaces. However all the functions and objects
are pre-defined, so the client program only can do limited things with these interfaces.
After the mobile agent was born, the situation was changed. Because of the three
advantages, agents are more feasible than the three mentioned techniques. The agents
can use the resources on the server, such as library code. Also the client can customize
functions in the agents so that agents do the job that the customer wants them to do.
A Mobile agent system provides an environment for running mobile agents. The
mobile agents only can travel the host running mobile agent system. First a mobile
agent lives in home host, and then the mobile agent migrates from one host to another
host to achieve a sequence of tasks. After the mobile agent finished its tasks, it will
back to home host. E.g. There is a mobile agent in the home host, it need to go
through each New Zealand banks’ server and find out which bank has a best

NZD-USD exchanged rate, then it has to choose the bank with the best exchanged rate,
and does the currency exchange if the exchanged rate are acceptable for customer,
finally it brings the currency home. All the jobs have done by agent own without
interact with home host. (See Fig 1.)

Mobile agents consist of three sections: code, data and state [HO98]. There are three
forms for mobile agents: source code, binary code, and intermediate code [NG00].
Each of the forms has its own characteristic. The mobile agents distributed in source
code are easy understood, relative small size and compatible; and the mobile agents
distributed in binary code or intermediate code is faster for execution.
As the mobile agents execute on the remote host, there are few aspects of security
problems involved. This paper will focus on one of the aspects: protecting mobile
agent against malicious host. Currently there exist lots of approaches trying to solve
this problem: 1) using hardware tamperproofing; 2) all mobile agents only can run in
the trust remote host domain; 3) use encrypted mobile agent [SA98]; 4) use
time-limited blackbox. For the first approach, we need the remote host to do extra
work base on hardware token, this introduces delay problem. However, if agents run
in the remote host, they do need a software tamperproofing technique rather than a
hardware tamper resistance to protect them. For the second one, it is not a good
approach for the open web; the areas are limited for executing agents. Also there is

Fig. 1

Home
Host

National
Bank
server

ASB
bank
server

ANZ
bank
server

not clear for what the “trust” means is and what happens if the “trust” host has done
something silly on the agents. For the third one, somehow, it is a kind of blackbox, it
trys to achieve running encrypted program. Nevertheless it can only apply for the
rational function and polynomial function. If the cryptography approach could apply
for every function, it would be a good solution. Unfortunately the mobile agents are
executable programs. it’s not easy to run the encrypted mobile agents.
When mobile agents travel the network, the security is a pain. To improve security of
mobile agents, first things to do are to identify the requirements for the security. In
[NG00], there are five goals to be achieved: confidentiality, integrity, accountability,
availability, and anonymity. In the late section of this paper, the time-limited blackbox
scheme will be exam with these five requirements.

3. Malicious host
The definition of the malicious host in [HO98] is “a party that is able execute an
agent that belongs to another party and that tries to attack that agent in some way.”
As the mobile agents are executed in the host, the host allocates all the resources, so
the host can launch lots of different kinds of actions to attack the agents. How does
the malicious host attack the agent? In [HO98a], Hohl introduced a model of attacks
of malicious host. The model use abstract machine RASPS (Random Access Stored
Program plus Stack). A RASPS contains four components, a set of memory; a set of
stack; a program counter; and a stack pointer. The mobile agent program is stored in
the memory of RASPS; values are preserved in the stack of RASPS. Program counter
points to the memory of RASPS , and stack pointer points to stack of RASPS. (see
Fig.2)

Fig.2 RASPS: Random Access Stored program plus Stack

When a new agent arrives at the host, it will be loaded into RASPS. The agent use

Memory Stack

Program counter

Stack pointer

1

2

3

4

5

6

7

1

2

3

4

5

6

7

system call to communicate with the runtime environment or agent partner. Before an
agent is loaded into agent RASPS, the attack program wrote by the attacker has
already loaded into attack RASPS. Therefore, there are two RASPS machines in the
host, one is agent RASPS, the other is attack RASPS. And the agent cannot directly
communicate with environment and agent partner anymore. It has to communicate
with them through the attack RASPS in this attack model. All the system calls and
statements that the agent launched can be eavesdropped by the attack program. The
attack program can modify the statement in the agent RASPS memory and the value
in the agent RASPS stack; can store that agent program’s statements in its own
RASPS stack; can store that agent program’s values in its own RASPS stack; can
access the agent RASPS memory and stack. In this attack model, the attack program
is so powerful, so that each statement executed by agent is under control by the attack
program.
In [HO98a], there are seven steps that the attacker RASPS will do before a new
statement of the agent is executed:
1. Fetch and decode the next statement of the agent RASPS
2. Store the next statement and parameters of next statement on the stack of the

attacker RASPS
3. Compute the future program counter of the agent RASPS and store this value on

the stack of the attacker RASPS
4. Analyses the statement of the agent program and execute attack program in

attacker RASPS memory
5. Execute the statement with stored parameters
6. Preserve future program counter stored on the stack of the attacker RASPS into

the program counter of the agent RASPS
Understanding this attack model is important and foundational, it will show the
concept that the malicious host attack mobile agent, and help to know how the
malicious host attack the mobile agent. Comprehending the concept and theory of the
attack model is the start point of developing the protection scheme for protecting
mobile agents.

4. Attacks
The attacker RASPS can generalize variant of attacks. Follow the concept of security
breaches that Pfleeger given, the possible attacks show below:

 Interruption
 Incorrect execution of code

 Without modifying the code, the host applies another way to execute
the code.

 Denial of execution
 The malicious host gives an unacceptable delay for executing the
program of the agent.

 Interception
 Eavesdrop the code of mobile agent

 Attacker can read the code of mobile agent, e.g. statements.
 Eavesdrop the data of mobile agent

 Attacker can read the data of mobile agent, such as variables.
 Eavesdrop the control flow of mobile agent

 Attacker can read the control flow.
 Eavesdrop the interaction with other agents

 Attacker can read the information transmitted between agents.
 Modification

 Modify the code of mobile agent
Attacker knows the location of the code; can modify the code of
mobile agent.

 Modify the data of mobile agent
 Attacker knows the location of the data; can modify the data of

mobile agent.
 Modify the control flow of mobile agent

Attacker knows the location of the control flow; can modify the
control flow of mobile agent

 Modify the interaction with other agents
 Attacker can modify the information transmitted between agents

 Sabotage
Attacker can modify a single bit or few bits of the agent code, cause
the damage.

 Fabricate
 Masquerading of the host

 The malicious host pretends itself as another host
 Returning wrong results of system calls issued by the agent

 The malicious host returns a wrong result of the system call to the
mobile agent

 Others

 Blackbox test
 The malicious host enters variant input to the agent, and gains the
output data, so that it can analyses the data.

5. Time-limited blackbox protection scheme
Before introducing time-limited blackbox approach used for protecting mobile agent
against malicious host, the early stage of this section will describe blackbox approach
first.
Imaging there is a black iron box on the table, there is not chance for us to know what
is inside the box, and there is also not chance for us to put something into the box. So

the object in the black iron box is safe. It is the idea that blackbox approach uses to
protect mobile agent. To achieve the blackbox protection scheme, there are two goals:
no one can read the code and data of the mobile agent; no one can modify the code
and data of the mobile agent. Any approach can satisfy all these two requirements, it
is a kind of blackbox protection scheme. The cryptography approach mentioned in
section 2 can meet the requirements, so it is a kind of blackbox approach.
Also, Hohl in [HO98] represent an alternative approach, apply obfuscation algorithm
and some parameters and convert the original agent to a new agent. Different new
agents are created depend on the different parameters. Here convert means mess up
the program. The original program will be messed up, the new agent with the mess-up
program is distributed on the network. Well the new agent does the exactly the same
things as the original agent does. After apply obfuscation algorithm on the original
program, the new program is hard to understand and analyses for the attackers. If the
attackers can never understand and analyses the code of mobile agent, the mobile
agent is protected by a blackbox. Unfortunately, sooner or later, attackers will break
the algorithm, and know the meaning of the code of the mobile agent. So this
approach can only protect mobile agents during interval time. (See Fig. 3)

The approach represented before is an incomplete approach. So Hohl in [HO98]
developed a new approach base on the approach described. The new agent created by
the convert mechanism is added a time property, a new attribute, expired date, is
added in the new agent. The idea is, before the expired date, it is not possible for the
attacker to comprehend the code in the program. After this expired date, even the
attackers can break the code, but the information that the attackers gained is not useful
anymore. So the attack will not threat to the mobile agent. The requirements for such
time-limited blackbox protection scheme as below:

 In a certain time interval
 No one can read the code and data of the mobile agent

Convert

Parameters Original agent
New agent
(blackbox)

Fig.3

 No one can modify the code and data of the mobile agent
 After expired date, the successful attacks will not have effects

In [HO98], Hohl provides three approaches of obfuscation: (1) variable recomposition;
(2) conversion of control flow elements into value-dependent jumps; and (3)
deposited keys. In [TH00][TH98][TH97], the authors classify four targets of
obfuscation: layout, control, data, and preventive. Each target has several operations,
and each operation has several transformations.
Applying the taxonomy of obfuscating transformations in [TH97], the target of
approach (1) is data, the operation is aggregation, and transformations involve both
split array and merge arrays transformation. (See Fig. 5)

In Fig.5, A, B, C, D and E are variables. Variable recomposition approach separates
each variable into sections, respect to the split array transformation in [TH97]. And
recombines them to different variables, respect to the merge arrays transformation in

Convert

Original agent
New agent
(blackbox)

Fig.4

282828282 seconds
remaining

Parameters

A B

A2 B3 A3C2 B1 B4 A1 B2 C1

C

D E

Fig. 5

[TH97]. The purpose of approach (1) is to hide the location of the variables. So that
the attacker cannot find out the location of variables.(See Fig. 6)

It’s not easy to identify the second approach provided by Hohl. Respect to the
taxonomy in [TH97], the target of approach (2) is control. The tough part is what kind
of transformation it belongs to. The idea of this approach is to convert the format of
some codes to a difficult understanding format. Example for approach (2) below:

Approach (3) is not belongs to the obfuscation scope. The mobile agent send a
requirement to a trust host, ask for some information about which statement should
execute next, and the trust host send the answers back to mobile agent. The ideal is
similar as the one describe in [MA84].

It doesn’t matter which kind of the obfuscation transformation used, all the

Public Currency exchange(double A)

Exchange(A); Excange(E[1]+D[0]+D[3]);

Original code Obfuscation code

Fig. 6

If(a(b)<c){
 b=s(d(e)+f);
}

start=0;
boolean abc=true;
while(abc){

switch(start)
case0: t1=a(b); start=4; break;
case1: t4=t3+f; start=3;break;
case2:{ if (t2){ start=7}else {start=5;}break;}
case3: b=t4; start=6; break;
case4: t2=t1<c; start=2; break;
case5: abc=false;break;
case6: start=5; break;
case7: t3=d(e); start=1; break;

}

Fig. 7

transformations defined in [TH97] can be used for achieving time-limited blackbox
protection scheme. It is sure that applying more than one transformation are more
secure than only applying one transformation.

6. Examine the time-limited blackbox approach
In this section, the time-limited blackbox approach will be examined whether this
approach satisfies the security requirements, whether this approach can stop all the
possible attacks issued by malicious host
.

 Examine the security requirements:

The five security requirements are: confidentiality, integrity, accountability,
availability, and anonymity.

 Confidentiality:
The private data in agent or host must keep secret. Only the authorized parties can
access them. “The type of access is read-type access” [PL97]. The time-limited
blackbox protection scheme doesn’t allow malicious host has any chance to
comprehend the code of mobile agent. However, the malicious host still can
access the memory of agent RASPS, read the code of mobile agent. Imaging if
someone stole a top secrete military file, the file is wrote by some cryptography,
even the person can read the file, he cannot understand it, so the information in
the file are safe. Hence, in some level, the time-limited blackbox protection
scheme is satisfied confidentiality of security.

 Integrity:
Prevent the unauthorized modification from modify the date, code, and state of
mobile agent. Under the time-limited blackbox protection scheme protecting,
attackers cannot understand the code of mobile agent, so they cannot modify the
code for specific goals, for example, attackers cannot increase or decrease the
foreign currency exchanged rate stored in the agent. But the attackers still can
modify the code for just want to damage it, such as Sabotage attack mentioned in
section 4. Hence, this protection scheme has low integrity.

 Availability:
Unauthorized parties cannot access and use the data store in the mobile agent.
Time-limited blackbox protection scheme has not problem to satisfy this
requirement of security.

 Accountability:
The actions of mobile agent and host are accountable. Time-limited blackbox
protection scheme can satisfy this requirement of security.

 Anonymity:
Mobile agents hide their owner’s identifies for not exposing to public.
Time-limited blackbox protection scheme can hide mobile agent owner’s
identifies.

 Examine the attacks:

As mentioned before, attackers can read code, control flow, but they would not
understand them, so time-limited blackbox approach can stop attacks such as: read
code, and read control flow. Also can stop modify code and control flow for specific
purpose. After applying obfuscation transformations, the location of the data is hid, so
the attacks such as read data, modify data, and incorrect execute the code are stopped.
However the scheme has nothing to do with the attacks such as modify the interaction
information, read the interaction information, masquerade, denial of execution,
returning wrong results, Sabotage, and analyses the I/O data.
After the third parties help to verify the result of the system calls, and the identity of
the host, mobile agents can avoid the attacks like the malicious host gives wrong
results of the system calls and masquerade attack. Mobile agent communicate with
other agents or host using secure channel, this will stop the attacks such as read the
interaction information and modify the interaction information.
All the information left after expired date of mobile agent are useless, this make the
denial of execution attack to stack.
Sabotage is an attack that modifies one or more bit of the agent code for damaging the
code. In [HO98], author solves such problem using CRC mechanism.
The method of stopping blackbox test attack is simply adding some dummy code, so
that the result will confuse the analyzer.

7. Comment
For the time-limited blackbox protection scheme, the major problem is how long a
time interval of the mobile agent should have, if the time interval is too large, the
attacker will get a chance to break the code. But if the time interval is too short,
mobile agent might not finish the tasks that the home host given. To determine a
perfect time interval is hard work.
Hohl in [HO98] use some techniques like CRC mechanism to stop attack such as
sabotage. It is sure when the attacker cannot access to the agent code, only can
communicate with mobile agent. On the other view, the attack program in RASPS can
access the code in the mobile agent RASPS memory. What happen if the attack
program directly access to the agent RASPS memory and modify the code inside it?
At this situation, CRC can do nothing to it. Can mobile agent use some
tamperproofing technology to protect agent code? The definition of tamperproofing in
[TH00] is detecting the modification and fails the program when modification
detected. In [TA01], author introduces a tamperproofing technique – dynamic
self-checking techniques. Basely, it inserts some testers and correctors into the code,
check if the code is modified. If it does, use correctors to correct the code. Apply
self-checking techniques, mobile agent code can be protected from malicious host

directly access agent RASPS memory and modify the code in memory.
Mobile agent uses secure channel to communicate with other agents or hosts. To
achieve this, mobile agent has to bring the private key to encrypt the messages or
bring the symmetric key to encrypt the messages. This will raise the risk of disclosing
the private key or symmetric key to malicious host. If the key disclose to the
malicious host, then the malicious host can use the key communicate to other hosts or
other agents and attack them.
Obfuscation is the approach that mix program so that the attacker can not understand
the code in short range of time. Unfortunately obfuscation involves human to modify
the code manually. Therefore the protected mobile agent cannot generate easily and
efficiently.

8. Conclusion
This paper describes time-limited blackbox approach for protecting the mobile agent
against malicious host. Also the paper examines the time-limited blackbox approach
with security requirements and possible attacks. The approach can satisfy most
security requirements and can stop most of attacks. However, the approach can not
meet the integrity requirement very well. Also the major problem is how to determine
how long should the mobile agent exist. Nevertheless, the time-limited blackbox
approach still gives a way to protect mobile agent from attacking by the malicious
host.

9. References:
[NE] Nelson Minar. Designing an ecology of distributed agents.

http://www.media.mit.edu/ nelson/

[NG00] Ng, Sau-Koon: Protecting Mobile Agents against Malicious Hosts.
Master Thesis. Division of Information Engineering, The Chinese University of
Hong Kong, June 2000.

[HO98] F. Hohl, “Time Limited Blackbox Security: Protecting Mobile Agents
from Malicious Hosts,” Mobile Agents and Security, pp. 92-113, vol. 1419,
Lecture Notes in Computer Science, Springer Verlag, 1998.

[HO98a] Hohl, F. (1998a). A model of attacks of malicious hosts against mobile
agents. In Proceedings of the ECOOP Workshop on Distributed Object
Security and Jth Workshop on Mobile Object Systems: Secure Internet Mobile
Computations, pages 105-120.

[SA98] T. Sander and C.F. Tschudin, “Protecting Mobile Agents against
Malicious Hosts,” Mobile Agents and Security, 1998.

[TA01] B Horne, L Matheson, C Sheehan, and R Tarjan, “Dynamic
Self-Checking Techniques for Improved Tamper Resistance”. In Workshop
on Security and Privacy in Digital Rights Management 2001. Available:
http://www.star-lab.com/sander/spdrm/papers.html, February 2002.

[TH00] C. Collberg and C. Thomborson. Watermarking, tamper-proofing,
obfuscation – Tools for software protection. Technical Report 2000-03,
University of Arizona, February 2000.

[MA84] Tim Maude and Derwent Maude, “Hardware protection against
software piracy,” Communications of the ACM, 27(9):950-959, September
1984.

[TH98] C. Collberg, C. Thomborson, and D. Low, “Manufacturing Cheap,
Resilient, and Stealthy Opaque Constructs,” Proc. Symp. Principles
of Programming Languages (POPL '98), Jan. 1998.
http://www.cs.auckland.ac.nz/collberg/Research/Publications/CollbergThombo
rsonLow98a/.

[TH97] C. Collberg, C. Thomborson, and D. Low, “A Taxonomy of Obfuscating
Transformations,” Technical Report 148, Dept. of Computer Science, Univ. of
Auckland, July 1997,
http://www.cs.auckland.ac.nz/~collberg/Research/Publications/CollbergThomb
orsonLow97a.

[PL97] C. Pfleeger, "Is there a security problem in computing?", Chapter 1 of
Security in Computing, 2nd edition, Prentice Hall, 1997, pp. 1-19.

