Extensible Security
Architectures for Java

|
“... [With] software-based protection we can

allow for more extensible security models ...”
Written by D Wallach etl-all
Presented by David Waters

20/09/00 1

Goals

= To find extensible security systems

= That uses Software-based
Methodologies

= And the Secure Services concept

20/09/00 2




Paper Overview

= Mobile code needs flexible security

Software based vs. hardware based methods

Memory protection vs. secure services
T

Possible solutions
= Capabilities

—— | My Focus

= Stack introspection

= Namespace management

Evaluation

Criteria
Results

20/09/00 3

Current Environment(Java)

= Trusted/untrusted (local/remote) code can co-
exist on the same JVM (and call each other).

= Java must be able to determine who initiated
this call.

= Reference to its ClassLoader.
= Frame stack has reference to thread.

= These combined mean that Java can search for remote
code on the call stack.

= The security manager does just that(Badly)

20/09/00 4




Capabilities

= Based on unforgeable references to a
controlled resource.

= "Any program which has a capability must have
been permitted to use it."

= Programmes must explicitly request a
capability to gain access.

= (A good way of doing this in Java is through the
factory pattern).

= Non-public Constructors.

20/09/00

Capabilities

Application FileFactory Filelnterface

GetFile(Sig[]) T

CheckSecure();
Create(Limit); |
Create();
* " Return(); T Retum();

~ Return(iFile);

J iFiIe.Oper(fileName) a}m

Open(filenameL) ~

20/09/00




Extended Stack
Introspection.

= (Used by both Netscape 4+ and IE 4+ ).
= Based on Simple Stack Introspection.

= Privileges created in the stack frame.

= Standard calls.

= T0 get access.

= Client call enablePrivilege.
= Service calls checkPrivilege.
= Client calls disablePrivilege when done.

20/09/00

Extended Stack

20/09/00

Introspection.
| L
CheckPriv(){ CheckPriv()y{
R eturllwl .true;} Return false;}
SecureService SecureService
{...checkPriv(); {.
..} checkPriv();
enablePriv(); .}
System
Applet Applet
disablePriv(); disablePriv();
System System




Name Space Management

= Achieves security by
showing/hiding/substituting all sensitive
classes.

= Thisis done by replacing the class
loader with one that maps (principles,
class requested) —> (class they are
allowed to access).

20/09/00 9

Name Space Management

Class MS | IBM David
Requested/
Principle
Java.net.socket _ o

Nil Security.io.Socket | Java.net.Socket
Java.io.file Nil Security.io.file Java.io.File
Java.net.server Java.net.Server

Socket Nil Nil Socket

20/09/00 10




Comparison

Extended Stack | Capabilites Name Space
Inspection Management
Exsisting Code
Changes Nil Some Nil
(User level)
(System Level) Some Extensive Some
(Kernel [JVM]) Nil Nil Some
Run time i None(some
Panilties Minimal EvenLess load time)
New Code
Changes Minimal Some Nil
2ydbiserLevel) 1

= What is wrong with the
SandBox?

= Allow multiple signatures?
= How to resolve
permissions?

= Are our choices now going
to limit what can be done
in the future?

= Which of the possible
solutions is best?

20/09/00 12




