
 Breaking Abstractions and Breaking Abstractions and Breaking Abstractions and Breaking Abstractions and
UnstructuringUnstructuringUnstructuringUnstructuring Data Structures Data Structures Data Structures Data Structures
 Christian Collberg Clark Thomborson Douglas Low

“Mobile programs are distributed in forms that are
isomorphic to the original source code. Such codes are
easy to decompile, and hence they increase the risk of
malicious reverse engineering attacks…
Code obfuscation is a potent defence against reverse
engineering. ”

Reviewer: Hongying lai

Outline of the Paper

� What is obfuscation ?

� Transformation quality

� Technique of obfuscation

� Conclusion

Obfuscation is a process that renders software
unintelligible but still functional.

- lexical transformation : modify the lexical structure of the program.

- data transformation : modify inheritance relations, ...
- control transformation: alter control structures using opaque predicates.

In this presentation I will focus on data transformations.

- potency, resilience, stealth and cost.

How to Obfuscate DataHow to Obfuscate DataHow to Obfuscate DataHow to Obfuscate Data

� Class – modify inheritance.

� Procedural abstraction(Java methods)
- convert a section of code into a different virtual machine;
- inline some methods, and outline other methods;
- clone methods.

� Variable – split built-in data types.

� Arrays – restructure
 - split an array into several sub-arrays;
 - merge two or more arrays into one array;
 - fold an array(increasing the number of dimensions);
 - flatten and array(decreasing the number of dimensions).

In this presentation I shall concentrate on modifying inheritance.

modify inheritancemodify inheritancemodify inheritancemodify inheritance

� Review of stage-1 CS: what is a Java class
- an encapsulation data(V) and control(M) .
- an aggregation(C2 instance of type C1).
- an inheritance (class C2 extends class C1) .

V2
M2

V1
M1

Root

C1

C2
V2
M2

modify inheritancemodify inheritancemodify inheritancemodify inheritance
(factoring classes)

� the complexity of a class grows with
- its depth in the inheritance hierarchy.
- the number of its direct descendants.

V
M

Root

C
V1
M1

Root

C1

C2
V2
M2 Root

V1
M1

V2
M2

C1 C2

Further from the root

More children

modify inheritancemodify inheritancemodify inheritancemodify inheritance
(false refactoring classes)

 Root

V1
M1

V2
M2

C1 C2

 Root

V1
M1

V2
M2

C1 C2

V3
M3

C3Insert a new

bogus class

public class Cexample{
 String message;
 public Cexample(String message){
 this.message = message ;
 printMessage();
 }
 public void printMessage(){
 System.out.println(message);
 }
}

example
public abstract class C1example{

 String message;

 public C1example(String message){

 this.message = message ;

 printMessage(); }

 public abstract String getMessage(String message);

 public void printMessage(){

 message = getMessage(message);

 System.out.println(message); }

}

public class C2example extends C1example{

 String message;

 public C2example(String message){

 this.message = message;}

 public String getMessage(String message){

 return message;}

}

V
M

Root

C
V1
M1

Root

C1

C2
V2
M2

Further from the root

ConclusionConclusionConclusionConclusion

Code obfuscation does not provide an application with absolute
protection against a malicious reverse engineering attack.
Obfuscation is a cheap way of making reverse engineering so
technically difficult that it becomes economically infeasible.

Finding new obfuscation techniques is a sophisticated and
challenging problem.

Questions

Do you think that the more complicated

the obfuscating transformation is , the better ?

