
� Introduction
� Signing, sealing and guarding Java object

� Motivation
� Design (in terms of API)
� Performance

� Summary

� Java Security Package
� Police-based
� Configurable
� Extensible
� Fine-grained access control

� Object Orientation
� Data encapsulation
� Object name space partition
� Type safety

� Distributed Java Application
� Java remote method Invocation package
� Convenient and necessary to protect the state of

an object for integrity and confidentiality

� Java.security.SignedObject and
java.security.GuardedObject are part of
JDK1.2

� Javax.crypto.SealedObject is included in
JCE1.2

� Motivation
� Authorization token
� Valid authentication across machines (JVMs)
� Provide authenticity of the state of an object
� Nested SignedObject
� Provide confideniality

� Design
� SignedObject contains the signed object, must be

serializable, and its signature
� Signing algorithm

� DSA
� SHA-1

� API Design
public SignedObject(Serializable object, PrivateKey signingKey,

Signature signingEngine)
public final void sign(PrivateKey signingkey, Signature

signingEngine)
public final Object getContent()
public final byte[] getSignature();
public final String getAlgorithm();
public final boolean verify(PublicKey verificationKey, Signature

verificationEngine);

� Example - Signing an object

Signature signingEngine =
Signature.getInstance(algorithm, provider)

SignedObject so = new SignedObject(myobject,
privatekey, signingEngine)

� Example - Verification
Signature verificationEngine =

Signature.getInstance(algorithm, provider)
If(so.verify(publickey, verificationEngine))

try {
Object myobj = so.getContent();

} catch (ClassNotFoundException e) {};

� Motivation

� Protect its confidentiality with cryptographic
algorithm (e.g. DES)

� Provide integrity to object

� API Design

Public SealedObject(Serializable object, Cipher c);

Public final Object getContent(Cipher c);

� Example - generate a DES cipher

KeyGenerator keyGen =
KeyGenerator.getInstance(“DES”);

SecretKey desKey = KeyGen.generateKey();
Cipher cipher = Cipher.getInstance(“Des”);
Cipher.init(Cipher.ENCRYPT_MODE, desKey);

� Example - create a SealedObject

String s = new String(“Greetings”);
SealedObject so = new SealedObject(s, cipher);

� Example - decrypt the SealedObject

Cipher.init(Cipher.DECRYPT_MODE, desKey);
Try {

String s = (String) so.getContent(cipher);
} catch(ClassNotFoundException e) {}

� Performance

� Similar to SignedObject.

� Depends on the serialization time and the speed
of the underlaying cryptographic algorithm.

� Motivation
� Security check done in the consumer side
� Don’t know what information to provide
� Performance (e.g. faster access)
� Consumer environment too security sensitive
� Too much information
� Guaranteed to occur in a context where the protection

mechanism would allow it
� Simplify server program

� API Design

Public abstract void checkGuard(Object object)
Public GuardedObject(Object object, Guard

guard);
Public Object getObject();

� Example
FileInputStream fis = new

FileInputStream(“/a/b/c”);
FilePermission p = new FilePermission(“/a/b/c”,

“read”);
GuardedObject g = new GuardedObject(fis, p);

FileInputStream fis = (FileInputStream)
g.getObject();

� Modula-3 and Oblique is related to
SignedObject and SealedObject.

� Gated Object model and Guard concept in
programming language research is similar to
the GuardedObject

� Enrich the existing Java security APIs, so
security aware applications can be much
easier to build.

� Performance is satisfy for commercial use.

