\}

\

\

gy, / |||||||||||||

Decompilation of
Binary Programs

Christina Cifuentes & K. John Gough
School of Computing Science
Queensland University of Technology
Presented by Conny Chan

\S

\

|

gy / ||||||||||||

Overview

Usage of decompiler

Phases of the decompiler
* Front-end, UDM, Back-end

The decompiling system
» Signature generator

Conclusion
Discussion

\
HI\

> 4 - / i
y, ” N\ S ay == = L Sy e
Reverse Compiler
“Perform inverse process of a compiler
Binary code ————3 HLL program
“Usage:
» Maintenance of Code
= Lost code recovery
* Migration of application to new HW platform.
* Translation of the obsolete code into new code.
¢ Software Security
« Malicious code detection
> 4 ~ - / >
o~ - = = gy ®

Note In advance:

‘Decompiler in this article:
» Experimental decompiler for the DOS OS
* Intel 180286 architecture
*» Read .com and .exe files
Produce C programs as output.

= o Ty N > ﬂlum
y 4 ” . gy P ,.M\ — e -’
Binary Program
Front-end
(machine dependent)
UDM
(analysis)
Back-end
(language dependent)
HLL program
= & =& Ty . ﬂlum
P 4 h S L - - l

L

&
y o

The Front-end

Virtual Memory
Binary
Program —) @
/ 1. Low-level

Semantic Intermediate code
Analysis 2. Control flow graph

A}

\

N P

The Semantic Analysis
Performs idiom analysis e.g.
neg dx
neg ax == eaahaak
sbb dx, O
type propagation.
» E.g. long variable found at —1 to —4.
[bp-2]
merged [bp-2]:[bp-4]
[bp-4]
» == L N / e

The Unlversal Decomplllng
Machine (UDM)

UDM
\ —® Data Flow Analysis
= l

1. Low-level 1 High-level
Intermediate code Control Flow Analysis Intermediate code

2. Control flow graph 2. Structured
control flow graph

\)

\

\

Uy, / =

The Back-end

—» Restructuring
‘ l

1. High-level HLL Code Generation ——® HLL Program
Intermediate code

2. Structured
control flow graph

\

\

\

Ty, / i

The HLL code generation

"‘Defines:

» Global variables

* Emits code for each function
“In each function:

» Comments of such procedures

“Variables and procedures named in
locl, proc2, etc.

\

A}
\

Uiy / i P

The Decompiling System

=

e

\

_ Signature %
Decompiler '_|F._ Generator -
(dce) (dceSign) =
> 4 —~ - / I

Signature Database

Extract Signatures
e.g. printf(), scanf()

v

Signature

Generator . Decompiler
3 Signature

(dccSign) = = (dco)

Compiler Signatures
Library Signatures

» If a library function matched, replaced by the
library name instead of analyzed by dcc.

\)

\

Ty, / |||||||||| »

Signatures
‘Library Signature
» A series of instructions that identifies
library function for a compiler.
“Compiler Signature
» A series of instructions that identifies a
particular version of a compiler.
P = = Uy, N / IIIIIIIIII —

Signature Checker

‘Determined If

Decompiler known Compilel’ 1S
(dee) used.

Sighalire 'Chfack first_ n byt_es

Cheger of instructions with

pattern-matching

Conclusion

Present one way for decompiling binary
program.

Prove the feasibility of writing a
decompiler for a contemporary machine
architecture.

Discussion

Is decompilation legal?

