
Decompilation of 
Binary Programs

Christina Cifuentes & K. John Gough
School of Computing Science

Queensland University of Technology
Presented by Conny Chan

Overview
Usage of decompiler
Phases of the decompiler

Front-end, UDM, Back-end

The decompiling system
Signature generator

Conclusion
Discussion



Perform inverse process of a compiler

Usage:
Maintenance of Code

Lost code recovery
Migration of application to new HW platform.
Translation of the obsolete code into new code.

Software Security
Malicious code detection

Reverse Compiler

Binary code HLL program

Note in advance:
Decompiler in this article:

Experimental decompiler for the DOS OS
Intel i80286 architecture
Read .com and .exe files
Produce C programs as output.



Decompiler Structure
Binary Program

Front-end
(machine dependent)

UDM
(analysis)

Back-end
(language dependent)

HLL program

The Front-end

Binary
Program

Virtual Memory

Loader Parser

1. Low-level 
Intermediate code
2. Control flow graph

Semantic
Analysis



The Semantic Analysis
Performs idiom analysis e.g. 

type propagation.
E.g. long variable found at –1 to –4.

neg dx
neg ax
sbb dx, 0 

neg dx:ax

[bp-2]
…

[bp-4]
merged [bp-2]:[bp-4]

The Universal Decompiling 
Machine (UDM)

1. Low-level 
Intermediate code
2. Control flow graph

UDM

Data Flow Analysis

Control Flow Analysis
1. High-level 
Intermediate code
2. Structured 
control flow graph



The Back-end

1. High-level 
Intermediate code
2. Structured 
control flow graph

Restructuring

HLL Code Generation HLL Program

The HLL code generation
Defines:

Global variables
Emits code for each function

In each function:
Comments of such procedures

Variables and procedures named in 
loc1, proc2, etc.



The Decompiling System

Decompiler
(dcc)

Signature 
Generator
(dccSign)

Signature Database

Signature 
Generator
(dccSign)

Signature
Database

Compiler Signatures
Library Signatures

Decompiler
(dcc)

Extract Signatures 
e.g. printf(), scanf()

If a library function matched, replaced by the 
library name instead of analyzed by dcc.



Signatures
Library Signature

A series of instructions that identifies 
library function for a compiler.

Compiler Signature
A series of instructions that identifies a 
particular version of a compiler.

Signature Checker

Determined if 
known compiler is 
used.
Check first n bytes 
of instructions with 
pattern-matching

Decompiler
(dcc)

Signature 
Checker



Conclusion
Present one way for decompiling binary 
program.
Prove the feasibility of writing a 
decompiler for a contemporary machine 
architecture.

Discussion
Is decompilation legal?


