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Decompilation of
Binary Programs

Christina Cifuentes & K. John Gough
School of Computing Science
Queensland University of Technology
Presented by Conny Chan
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Overview

Usage of decompiler

Phases of the decompiler
* Front-end, UDM, Back-end

The decompiling system
» Signature generator

Conclusion
Discussion
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Reverse Compiler
“Perform inverse process of a compiler
Binary code ————3 HLL program
“Usage:
» Maintenance of Code
= Lost code recovery
* Migration of application to new HW platform.
* Translation of the obsolete code into new code.
¢ Software Security
« Malicious code detection
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Note In advance:

‘Decompiler in this article:
» Experimental decompiler for the DOS OS
* Intel 180286 architecture
*» Read .com and .exe files
# Produce C programs as output.
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Binary Program
Front-end
(machine dependent)
UDM
(analysis)
Back-end
(language dependent)
HLL program
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The Front-end

Virtual Memory
Binary
Program — ) @
/ 1. Low-level

Semantic Intermediate code
Analysis 2. Control flow graph
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The Semantic Analysis
Performs idiom analysis e.g.
neg dx
neg ax == eaahaak
sbb dx, O
type propagation.
» E.g. long variable found at —1 to —4.
[bp-2]
merged [bp-2]:[bp-4]
[bp-4]
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The Unlversal Decomplllng
Machine (UDM)

UDM
\ —®  Data Flow Analysis
= l

1. Low-level 1 High-level
Intermediate code Control Flow Analysis Intermediate code

2. Control flow graph 2. Structured
control flow graph
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The Back-end

—»  Restructuring
‘ l

1. High-level HLL Code Generation ——® HLL Program
Intermediate code

2. Structured
control flow graph
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The HLL code generation

"‘Defines:

» Global variables

* Emits code for each function
“In each function:

» Comments of such procedures

“Variables and procedures named in
locl, proc2, etc.
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The Decompiling System
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_ Signature %
Decompiler '_|F._ Generator -
(dce) (dceSign) =
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Signature Database

Extract Signatures
e.g. printf(), scanf()
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Signature

Generator . Decompiler
3 Signature

(dccSign) = = (dco)

Compiler Signatures
Library Signatures

» If a library function matched, replaced by the
library name instead of analyzed by dcc.
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Signatures
‘Library Signature
» A series of instructions that identifies
library function for a compiler.
“Compiler Signature
» A series of instructions that identifies a
particular version of a compiler.
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Signature Checker

‘Determined If

Decompiler known Compilel’ 1S
(dee) used.

Sighalire 'Chfack first_ n byt_es

Cheger of instructions with

pattern-matching




Conclusion

Present one way for decompiling binary
program.

Prove the feasibility of writing a
decompiler for a contemporary machine
architecture.

Discussion

Is decompilation legal?




