COMPSCI715 Part 2

Lecture 7 - Advanced Ray Tracing

Advanced Ray Tracing

- Acceleration methods
- Distributed Ray Tracing

Acceleration Methods

- Suppose 100,000 objects and 1000x1000 output
 - 10⁶ per ray tests -> 10¹¹ per image
 - Plus reflections, shadow tests etc
 - Need to reduce ray tests
- Methods:
 - Bounding Volumes
 - Vista buffers
 - Space subdivision

Bounding Volumes

• Idea:

- Find box/sphere that encompasses object
- Test ray against bounds
- If hit: test underlying geometry
- Can use hierarchical volumes
- Marginal cost increase

Vista Buffer

• Idea:

- Do initial projection of scene onto viewplane
- List objects which cover each pixel
- Do primary ray intersection with those objects only
- Doesn't speed up reflection / shadow rays

Vista Buffer

Light Buffer

- Shadow rays are costly (can be 90% of time)
- Light Buffer:
 - Build box around each light
 - Project scene onto each face of box
 - Determine which face / pixel of projection shadow ray passes through
 - Only interesection test against possible objects

Space Subdivision

- Idea:
 - Subdivide scene in some way
 - Determine which objects intersect each region
 - Trace ray through each relevant region
 - Only test against member objects
- Methods:
 - Regular grid
 - Octree
 - BSP-Tree

Regular grid

- Create regular grid of scene
- Each grid store list of child objects
- Trace ray inside each grid it passes

Octree

- Recursively subdivide space into 8 cubes
- Continue till at max (x) objects in each cell
- Steps faster but trickier algorithm

BSP-Tree

- Subdivide space using planes
- Choose planes intelligently
- Simple traversal but difficult subdivision

Problem with Ray Tracing

- Standard ray tracing
 - Point sample of colour
 - Should be average of area!
 - Point sample of shadow
 - Lights aren't just points!
 - Point sample of reflection
 - No such thing as a perfect mirror!

Distributed Ray Tracing

- Refers to distribution of samples, not distribution of computation
- Allows for anti-aliasing and motion blur

Aliasing

- Aliasing is where high frequency phenomena appear as low frequency due to point sampling
- Often seen as 'jaggies' on edges and 'Moiré patterns' in textures
- Sampling Theorem:

If you want to be able to unambiguously reconstruct a signal from its samples, the sample frequency must be at least twice the highest frequency present in the signal.

Averaging Colour

- Use Monte-Carlo Integration / Stochastic Sampling
 - Distribute 'randomly' over filter region
 - Usually subdivide and take one ray from each sub-region
- Why randomly?

Stochastic Sampling with Box Filter

- Idea:
 - Break region into grid
 - Take one sample from each sub-region
- Good for jaggies, not so good for Moiré patterns

Stochastic Sampling with a weighted filter

- Assign greater weight to samples closer to the center
- 'Importance Sampling'
 - Break area into regions of equal weighting
 - Take one sample from each region
 - Average samples (weighting already done)

Stochastic Sampling with a weighted filter

- Weighting function
 - Want to favour center
 - Hamming Filter
 - $w(r) = k(1 + cos(\pi r/r_{max}))$
- Breaking into areas
 - Random angle, random r is hard

Weighting Areas

Stochastic Sampling with a weighted filter

- Previous method can be very wasteful
- Better way: use a footprint
 - Use box filtering but with underlying weighting function
 - Can use across multiple pixels for better sampling

Temporal Antialiasing

- Moving objects and fixed time integrals can create appearance of jagged movement
 - Example: wagon wheel effect
- Can distribute samples in space as well as time
- Simple way:
 - For each super-sample ray also jitter in time (i.e. update positions)

- Camera photos have 'focal plane' in which scene objects are in focus
- Focus is a function of the distance from this plane
- Can get depth of field from stochastic sampling:
 - Jitter super-sample points on a lens, through focal point

Sources

 Lobb, R (2003). Advanced Ray Tracing. COMPSCI 715 Lecture Notes