
COMPSCI 715 Part 2
Lecture 6 - Rigid Body Mechanics

Rigid Body

• In physics, a rigid body is an idealization of a
solid body of finite dimension in which
deformation is neglected. In other words, the
distance between any two given points of a
rigid body remains constant regardless of
external forces exerted on it.

Rigid Body Dynamics

• Classical Mechanics / robotics

• Game physics == rigid body mechanics

• Collision Detection and response

• Solving system constraints

• Arbitrary shapes, interactions and
dependencies

16,384 pieces
44 fps

Rigid Body Position

• Expressed as combination of translation and
rotation from fixed reference

• Thus position has both linear and
‘orientation’ component

Frame of Reference
• We choose the center of mass:

• Mrc = ∑miri

• linear momentum is independent of
rotational momentum

• angular momentum is the same regardless
of translation and is always ω×I

• simplifies possible motion (no forces) to
constant translation and constant velocity

Position (of a point)

• r(t,r0) = rc(t) + Ω(t)r0

• r0 is position w.r.t. reference

• r(t,r0) is position at time t

• rc is the reference position

• Ω(t) is the orientation matrix

Velocity (of a point)

• v(t,r0) = vc(t) + w(t) x Ω(t)r0

• v(t,r0) is the total velocity of the point /
particle

• vc(t) is translational velocity

• w(t) is the angular velocity

• Remember: angular velocity is ∂Ω/∂t

vc(t)
w(t)

Linear Momentum

• Momentum of the body is the sum of the
momentum on each point

• pT = ∑mivi OR

• pT = Mvc

Angular Momentum

• Represented as a vector

• direction is axis of spin, magnitude is speed

• L = ∑(ri X mipi)

• Torque

• T=(ri-rc)XF

• T=∂L/∂t = Iώ
• T=∑((ri-rc) X ∑fi)

Inertia

• A tensor describing how hard it is to change
the rotation

• Written: I

• Ibody=∑mi((r0i T r0i)1-r0ir0i T)

• I(t) = Ω(r)IbodyΩ(t)T

Acceleration

• Linear:

• a=∑Fi/M

• Angular:

• ώ=ϒ/I

Algorithm
1. Determine center of mass

2. Set initial postion, orientation etc

3. Find sum of all forces / total mass

4. For each force find related effect on torque

5. Divide torque by interia

6. Use ODE Solver to update position,
velocity, orientation, and angular velocity

Example Forces

• Gravity (or any constant field)

• Does not create torque

• Spring on a point

• Calculate torque as described

Example Forces

• Drag / Friction

• Find which points of the surface would be
affected and apply where relevant

• Attractor/Repulser

• Either treat as a field or (if attenuated) act
as force on sample points around COM

Collisions

P

• A collision occurs when a point on one body
touches a point on another body with a
negative relative normal velocity

• i.e. (va-vb)•n < 0

• (n must be chosen carefully)

n

v

Collision Detection

• Question: Is position inside or outside of an
object?

• Can be difficult for complex shapes

• Need to bring system back to time of
collision

P

Collision Resolution

• Respond to collision based on physics of the
two objects

• Spin and translate based on momentum of
the two objects

Pva

ma

vb=0 mb=∞

Simple Collision
Resolution

• Can’t change velocities instantaneously so
use ‘impulse’

• Use ‘Law of Restitution for Instantaneous
Collisions with No Friction’

• Only collision forces apply

Collision Resolution

• Velocity:

• va1 = va0 +(ε/M)n

• Angular Velocity

• ωa1 = ωa0 +(Ω•εn)/I

• Where ε is the coefficient of restitution

Rigid Body
Implementation

• Need way of creating rigid body
representation of arbitrary objects

• Can use particles

• Simple way to calculate COM

• Very easy to approximate forces at points
and collision detection

Filling an object
(Depth Peeling)

• Object projected onto axis, depth is first
intersection point, second depth image is
second intersection and so on

• Render to 3D voxels and determine if
between an odd and even depth image

• Center of each voxel represents particle

Rigid Body
Implementation

• 3 phases in each timestep

• Integrate positions / velocities (GPU)

• Detect collisions (CPU)

• Resolve collisions (Depends)

• Communicate between the two

Rigid Body
Implementation

• Integration of positions / velocities

• Each force is ‘applied’ to nearest particle
and accumulated

• Equations solved as described before

Rigid Body
Implementation

• Collision Detection

• Calculate collisions between particles, not
objects

• Sphere<->Sphere is easy based on
distance

• Use space subdivision techniques to lower
computational complexity

• i.e. Uniform Grid

Rigid Body
Implementation

• Collision Reaction

• Discrete Element Method

• Repulsive force modeled by spring and
dampening force

• fs = -(k(d-|rij|)rij)/|rij|

• fd = ηvij

Rigid Body
Implementation

• This technique:

• Allows for multiple resolutions (large
particles means faster rendering)

10922 Tori
68fps

Sources

• Baraff, D (2001) Physically Based Modeling:
Rigid Body Simulation. SIGGRAPH Course
notes

• Harada, T (2007). Real-Time Rigid Body
Simulation on GPUs. GPU Gems 3

• Hecker, C (1995). Physics, The Next
Frontier. Game Developer Magazine

