COMPSCI715 Part 2

Lecture 6 - Rigid Body Mechanics

Rigid Body

 In physics, a rigid body is an idealization of a solid body of finite dimension in which deformation is neglected. In other words, the distance between any two given points of a rigid body remains constant regardless of external forces exerted on it.

Rigid Body Dynamics

- Classical Mechanics / robotics
- Game physics == rigid body mechanics
 - Collision Detection and response
 - Solving system constraints
 - Arbitrary shapes, interactions and dependencies

<<Real-time Rigid Body Simulator>> Takahiro Harada

Number of Rigid Bodies : 540

16,384 pieces 44 fps

Rigid Body Position

- Expressed as combination of translation and rotation from fixed reference
- Thus position has both linear and 'orientation' component

Frame of Reference

- We choose the center of mass:
 - $Mr_c = \sum m_i r_i$
 - linear momentum is independent of rotational momentum
 - angular momentum is the same regardless of translation and is always ω×I
 - simplifies possible motion (no forces) to constant translation and constant velocity

Position (of a point)

- $r(t,r_0) = r_c(t) + \Omega(t)r_0$
 - r₀ is position w.r.t. reference
 - r(t,r₀) is position at time t
 - r_c is the reference position
 - $\Omega(t)$ is the orientation matrix

Velocity (of a point)

- $v(t,r_0) = v_c(t) + w(t) \times \Omega(t)r_0$
 - v(t,r₀) is the total velocity of the point / particle
 - v_c(t) is translational velocity
 - w(t) is the angular velocity
- Remember: angular velocity is $\partial \Omega / \partial t$

Linear Momentum

- Momentum of the body is the sum of the momentum on each point
 - $\mathbf{p}_T = \sum m_i \mathbf{v}_i$ OR
 - $\mathbf{p}_T = M \mathbf{v}_c$

Angular Momentum

• Represented as a vector

- direction is axis of spin, magnitude is speed
- $\mathbf{L} = \sum (r_i \times m_i \mathbf{p}_i)$
- Torque
 - $T=(r_i-r_c)XF$
 - $T = \partial L / \partial t = I \dot{\omega}$
 - $T=\sum((r_i-r_c) \times \sum f_i)$

Inertia

- A tensor describing how hard it is to change the rotation
- Written: I
- $I_{body} = \sum m_i((r_{0i}^T r_{0i}) I r_{0i} r_{0i}^T)$
- $I(t) = \Omega(r)I_{body}\Omega(t)^{T}$

Acceleration

- Linear:
 - $a = \sum F_i / M$
- Angular:
 - ώ=Υ//

Algorithm

- I. Determine center of mass
- 2. Set initial postion, orientation etc
- 3. Find sum of all forces / total mass
- 4. For each force find related effect on torque
- 5. Divide torque by interia
- 6. Use ODE Solver to update position, velocity, orientation, and angular velocity

Example Forces

- Gravity (or any constant field)
 - Does not create torque
- Spring on a point
 - Calculate torque as described

Example Forces

• Drag / Friction

- Find which points of the surface would be affected and apply where relevant
- Attractor/Repulser
 - Either treat as a field or (if attenuated) act as force on sample points around COM

- A collision occurs when a point on one body touches a point on another body with a negative relative normal velocity
- i.e. $(v_a v_b) \cdot n < 0$
 - (n must be chosen carefully)

- Question: Is position inside or outside of an object?
 - Can be difficult for complex shapes
 - Need to bring system back to time of collision

- Respond to collision based on physics of the two objects
 - Spin and translate based on momentum of the two objects

Simple Collision Resolution

- Can't change velocities instantaneously so use 'impulse'
- Use 'Law of Restitution for Instantaneous Collisions with No Friction'
 - Only collision forces apply

Collision Resolution

- Velocity:
 - $v_{a1} = v_{a0} + (\epsilon/M)n$
- Angular Velocity
 - $\omega_{al} = \omega_{a0} + (\Omega \cdot \epsilon n)/l$
- Where ϵ is the coefficient of restitution

- Need way of creating rigid body representation of arbitrary objects
- Can use particles
 - Simple way to calculate COM
 - Very easy to approximate forces at points and collision detection

Filling an object (Depth Peeling)

- Object projected onto axis, depth is first intersection point, second depth image is second intersection and so on
- Render to 3D voxels and determine if between an odd and even depth image
- Center of each voxel represents particle

- 3 phases in each timestep
 - Integrate positions / velocities (GPU)
 - Detect collisions (CPU)
 - Resolve collisions (Depends)
 - Communicate between the two

- Integration of positions / velocities
 - Each force is 'applied' to nearest particle and accumulated
 - Equations solved as described before

- Collision Detection
 - Calculate collisions between particles, not objects
 - Sphere<->Sphere is easy based on distance
 - Use space subdivision techniques to lower computational complexity
 - i.e. Uniform Grid

- Collision Reaction
 - Discrete Element Method
 - Repulsive force modeled by spring and dampening force
 - $f_s = -(k(d-|r_{ij}|)r_{ij})/|r_{ij}|$
 - $f_d = \eta v_{ij}$

- This technique:
 - Allows for multiple resolutions (large particles means faster rendering)

<<Real-time Rigid Body Simulator Takahiro HARADA

Number of Rigid Bodies : 630

10922 Tori 68fps

Sources

- Baraff, D (2001) Physically Based Modeling: Rigid Body Simulation. SIGGRAPH Course notes
- Harada, T (2007). Real-Time Rigid Body Simulation on GPUs. GPU Gems 3
- Hecker, C (1995). Physics, The Next Frontier. Game Developer Magazine