COMPSCI 715 Part 2

Lecture 6 - Rigid Body Mechanics

Rigid Body

® |n physics, a rigid body is an idealization of a
solid body of finite dimension in which
deformation is neglected. In other words, the
distance between any two given points of a
rigid body remains constant regardless of
external forces exerted on it.

Rigid Body Dynamics

® (lassical Mechanics / robotics

® Game physics == rigid body mechanics
® Collision Detection and response
® Solving system constraints

® Arbitrary shapes, interactions and
dependencies

¢¢Real-time Rigid Body Simulator>> -

Takahiro Harada

Humber of Rigild Bodies : 3540

16,384 pieces
44 fps

Rigid Body Position

® Expressed as combination of translation and
rotation from fixed reference

® Thus position has both linear and
‘orientation’ component

Frame of Reference

® \We choose the center of mass:

® Mrc =) mir

® |linear momentum is independent of
rotational momentum

® angular momentum is the same regardless
of translation and is always wx|

® simplifies possible motion (no forces) to
constant translation and constant velocity

Position (of a point)

® r(t,ro) = re(t) + Q(t)ro
® o is position w.r.t. reference
® r(t,ro) is position at time t
® r. is the reference position

e ()(t) is the orientation matrix

Velocity (of a point)

® v(t,ro) = ve(t) + w(t) x Q(t)ro

® v(t,ro) is the total velocity of the point /
particle

ve(t)

(t)
® v (t) is translational velocity

® w(t) is the angular velocity

® Remember: angular velocity is dQ)/ot

Linear Momentum

® Momentum of the body is the sum of the
momentum on each point

® pT = A h% OR
® Pt = Mv.

Angular Momentum

® Represented as a vector

® direction is axis of spin, magnitude is speed
® L=)(rXmipi
® Jorque
® T=(ri-rc)XF
® T=0L/ot = lw
® T=) ((ri-ro) X 2f)

Inertia

A tensor describing how hard it is to change
the rotation

Written: |
lbody=> mi((roi " roi) I -roiroi ")

I(t) = Q(r)lbodyQ(t)T

Acceleration

® Linear:
e a=)F/M
® Angular:

e wW=Y/l

o U1 A W N

Algorithm

. Determine center of mass
. Set initial postion, orientation etc

. Find sum of all forces / total mass

For each force find related effect on torque

. Divide torque by interia

. Use ODE Solver to update position,

velocity, orientation, and angular velocity

Example Forces

® Gravity (or any constant field)
® Does not create torque
® Spring on a point

® (Calculate torque as described

Example Forces

® Drag/ Friction

® Find which points of the surface would be
affected and apply where relevant

® Attractor/Repulser

® FEither treat as a field or (if attenuated) act
as force on sample points around COM

Collisions

18

® A collision occurs when a point on one body
touches a point on another body with a
negative relative normal velocity

® ji.e.(Va-vp)*n <0

® (n must be chosen carefully)

Collision Detection

® Question: Is position inside or outside of an
object!?

® Can be difficult for complex shapes

® Need to bring system back to time of
collision

Collision Resolution

Va

Vb=0 mb=oo
® Respond to collision based on physics of the
two objects

® Spin and translate based on momentum of
the two objects

Simple Collision
Resolution

® Can’t change velocities instantaneously so
use ‘impulse’

® Use ‘Law of Restitution for Instantaneous
Collisions with No Friction’

® Only collision forces apply

Collision Resolution

® Velocity:
® val = vao H(€/M)n
® Angular Velocity
® Wal = Wqo +(Qeen)/l

® Where € is the coefficient of restitution

Rigid Body
Implementation

® Need way of creating rigid body
representation of arbitrary objects

® Can use particles

® Simple way to calculate COM

® Very easy to approximate forces at points
and collision detection

Filling an object
(Depth Peeling)

® Object projected onto axis, depth is first
intersection point, second depth image is
second intersection and so on

® Render to 3D voxels and determine if
between an odd and even depth image

® Center of each voxel represents particle

Rigid Body
Implementation

® 3 phases in each timestep
® |ntegrate positions / velocities (GPU)
® Detect collisions (CPU)
® Resolve collisions (Depends)

® Communicate between the two

Rigid Body
Implementation

® |ntegration of positions / velocities

® Each force is ‘applied’ to nearest particle
and accumulated

® Equations solved as described before

Rigid Body
Implementation

® Collision Detection

® Calculate collisions between particles, not
objects

® Sphere<->Sphere is easy based on
distance

® Use space subdivision techniques to lower
computational complexity

® j.e.Uniform Grid

Rigid Body
Implementation

® Collision Reaction
® Discrete Element Method

® Repulsive force modeled by spring and
dampening force

o f = -(k(d-|ri|)ri)/|ril

® fd — rIVij

Rigid Body
Implementation

® This technique:

® Allows for multiple resolutions (large
particles means faster rendering)

<<Real-time Rigid Body Simulata
Takahiro HARADA

Mumber of Rigid Bodies @ 630

10922 Tori
68fps

Sources

® Baraff, D (2001) Physically Based Modeling:

Rigid Body Simulation. SIGGRAPH Course
notes

® Harada, T (2007). Real-Time Rigid Body
Simulation on GPUs. GPU Gems 3

® Hecker, C (1995). Physics, The Next
Frontier. Game Developer Magazine

