
COMPSCI 715 Part 2
Lecture 5 - ODE Solvers & Particle Systems cont..

Runge-Kutta Methods
• More accurate solution depends on higher-

order estimates

• RK algorithm based on truncation of the
taylor series:

Where RK(n) means first (n) terms taken
i.e Euler is RK1(in brace above)

 Midpoint is RK2

Midpoint method

• Compute Euler step
using initial
derivative

• Evaluate derivative
at midpoint of step

• Return to start and
use new derivative
to take full step

Midpoint method

• Compute Euler step
using initial
derivative

• Evaluate derivative
at midpoint of step

• Return to start and
use new derivative
to take full step

Midpoint method

• Compute Euler step
using initial
derivative

• Evaluate derivative
at midpoint of step

• Return to start and
use new derivative
to take full step

Compare Midpoint with
Euler

Euler ∆t=1 Midpoint ∆t=1

4th order Runge Kutta

“For many scientific users, fourth-order Runge-Kutta is
not just the first word on ODE integrators, but the last
word as well. In fact, you can get pretty far on this old
workhorse, especially if you combine it with an adaptive
stepsize algorithm. ... Bulirsch-Stoeror predictor-
corrector methods can be very much more efficient for
problems where very high accuracy is a requirement.
Those methods are the high-strung racehorses. Runge-
Kutta is for ploughing the fields.”

– Press et al, “Numerical Recipes”

RK4 Equations

Back to Particle Systems

• Enhancements:

• Point Sprites

• Using the GPU

Point Sprites

• An advanced method of providing particle
system geometry to the GPU

• Part of OpenGL 2.0

• Allows for hardware implementation of
billboarding

• Specified as single point

• Which is both good and bad

Point Sprites - Impl

• Use existing point functions for setting up

• glPointSize()

• glPointParameter for attenuation, max/min size and
fading

• For automatic texture coordinate generation

• glTexEnvf
(GL_POINT_SPRITE,GL_COORD_REPLACE,GL_TRUE)

Point Sprite - Impl

• Enable with glEnable(GL_POINT_SPRITE)

• Draw with glBegin(GL_POINTS)

Demo

Particle Systems
On the GPU

• Two types:

• Stateless

• State-preserving

Stateless

• Simplistic

• Use few parameters such as time of birth,
acceleration, actual time and defined forces

• Implemented on the vertex shader

Stateless

1. Define colour as velocity(r,g,b) and time(a)

2. Place vertex at initial position

3. Use Euler to move vertex to current
position

4. Draw point

Stateless

• Colour and opacity can be defined as linear
segments with keyframes

• Linear interpolation between nearest

ƒ(t)

t

k0

k1 k2

k3

Stateless
void main(void)
{
 vec4 vertex = gl_Vertex;

 float t = max(Time - gl_Color.a, 0.0);

 // modulo(a, b) = a - b * floor(a * (1 / b)).
 t = t - RepeatFactor * floor(t * (1.0 / RepeatFactor));

 vec3 velocity = Radius * (gl_Color.xyz - vec3(0.5));

 vertex += vec4(velocity * t, 0.0);
 vertex.y -= Acceleration * t * t;

 Color = vec4(gl_Color.rgb, 1.0 - t);
 gl_Position = gl_ModelViewProjectionMatrix * vertex;
}

Vertex Shader:

State-Preserving

• Closer to the CPU based implementation

• Lower CPU->GPU communication

• Stores all data on graphics card and updates
within the fragment shader

State Preserving

• Requires:

• Floating-point pipeline (i.e. not [0,1])

• Pixel-buffer objects

• Store particle state information on the GPU
as textures (separate for position, velocity)

State Preserving

1. Particle Creation / Destruction

2. Pass 1: Update Particle Velocities

3. Pass 2: Update Particle Positions

4. Transfer pixel to vertex buffer

5. Render

time

x,y,z x,y,z

State-Preserving

• Double buffer
position and velocity
textures to stop
rendering over itself

x,y,zx,y,zVelocity

Position

Static
particle info

Particle Creation

• Creation is a serial process so best for CPU

• Allocate based on next available position

• Render over top of previous information in
position/velocity texture

• Dead particles are moved infinitely far away
from view

Pass 1:Update Velocity

• Describe forces as one vector, sum of

• Global Forces (gravity, wind)

• Local distance based forces

• Collision (limited to simple)

• All implemented in the shader

• Update velocity using Euler

Pass 1:Update Velocity

vec3 advanceVelocity(vec3 velocity, vec3 position, float timeStep){
 vec3 acceleration = vec3(0,-0.1,0); //gravity
 aceleration += localAttractor(position,Att0Pos,Att0Force,Att0Radius);
 aceleration += collision(position,velocity,Sphere0Pos,Sphere0Radius);
 velocity = veclocity + timeStep*acceleration;
 dampen(velocity);
 return velocity;
}

void main(void){
 vec3 velocity = vec3(texture2D(velocityTexture, gl_TexCoord[0].st);
 vec3 position = vec3(texture2D(vositionTexture, gl_TexCoord[0].st);
 gl_FragColor = vec4(advanceVelocity(velocity,position,TimeStep),0.0);
}

Example Fragment Shader:

Update Position and
transfer for render

• Use velocity texture to update position
texture using Euler method

• Interpret position texture in vertex shader
and reposition point sprites

Update Position

void main(void){
 vec3 velocity = vec3(texture2D(velocityTexture, gl_TexCoord[0].st);
 vec3 position = vec3(texture2D(vositionTexture, gl_TexCoord[0].st);
 position = position + TimeStep * velocity; //Euler
 gl_FragColor = vec4(position,1);
}

Example Fragment Shader:

Sources

• Latta, L (2004). Building a Million Particle
System. GDC 2004

• Lobb, R (2003). Physically Based Animation
Lecture Notes. COMPSCI715 2003

