ANDROID SECURITY REFINEMENTS
Lecture 12a

COMPSCI 702
Security for Smart-Devices

Nalin Asanka Gamagedara Arachchilage

Slides from Muhammad Rizwan Asghar

March 25, 2021

SYSYE] THE UNIVERSITY OF
* X

o
X



SECURITY REFINEMENTS

= Android’s security framework is based on MAC and
DAC

= Qut of necessity and for convenience, Android offers
several security refinements to the basic security model

= These refinements can be considered as exceptions

= Some of these refinements have subtle side effects
— Which makes the overall security difficult to understand



PUBLIC VS PRIVATE COMPONENTS

= Apps often contain components that other apps should
never access

— For example, an activity returning a user password

= The developer can declare this component private
— Set the exported attribute to false in the manifest file

= Private components can only be accessed by other
components in the same app

* Private components simplify security specification

— Developers do not need to worry about assignment of permission
labels



PUBLIC VS PRIVATE COMPONENTS

= Best practice

— Always declare the component private to avoid unknowingly
access by other components




IMPLICITLY OPEN COMPONENTS

= Developers frequently define intent filters on activities

— E.g., the system finds an image viewer when an intent is with a
VIEW action

= The caller cannot know beforehand what access
permission is required

* The developer of the target activity can declare it open
by not assigning any access permission to it
— That is, a public component without any permission



IMPLICITLY OPEN COMPONENTS

= Advantage

— This enables richer functionality and ease of development

= |ssue
— Any app can have access
— It can lead to poor security practices

= Best practice
— Components must be declared open in exceptional cases

— Consider splitting components to sub-components to specify fine-
grained control




BROADCAST INTENT PERMISSIONS O

= A broadcast intent is read by all apps
* |t can lead to leaking sensitive information

» Using a broadcast intent permission, the developer can
protect the intent

= A broadcast intent permission can be declared
programmatically
— sendBroadcast(intent, COMPSCI702.0OurPermission)

— Does the manifest file provide a complete view of the app
security?

= Best practice
— Always use a broadcast intent permission



CONTENT PROVIDER PERMISSIONS

= Recall that content providers provide interfaces for
reading (select) or writing (insert, update, and delete)
the data

* |nstead of using one permission label, Android allows
developers to assign both read and write permissions

= Best practice
— Always define both read and write permissions



SERVICE HOOKS

/2
7Y/

= |f a component has the permission, it can start, stop, or
bind the service at anytime

* To specify more flexible and fine-grained access
control, Android allows components to invoke the
checkPermission() method

= This extra check is performed at the code level
= |tintermingles code and security policies

= Best practice
— Use checkPermission()
— Create sub-services



PENDING INTENTS

* Pending Intents delegate actions to another app

— E.g., passing Pending Intent to other apps enables them to invoke
services on behalf of the requesting app

* Pending Intents provide better integration with the third
party apps

* Pending Intents enable delegation, which is deviation
from the MAC model

10



URI PERMISSIONS

= Android uses a special content URI to deal with content
providers
— It can also specify a record within a table

= An app that does not have a read permission to access
the content provider, it can get access using a URI
permission

* The developer can pass a URI in an intent filter

= Like Pending Intents, URI permissions also enable
delegation, which is deviation from the MAC model

11



RESOURCES

Chapter 2 of

Android Security Internals: An In-Depth Guide to Android's
Security Architecture

Elenkov, Nikolay

First Edition

No Starch Press 2014

ISBN:1593275811 9781593275815

Enck, William, Machigar Ongtang, and Patrick McDaniel
Understanding Android Security
IEEE Security & Privacy 1 (2009): 50-57

SELinux concepts
https://source.android.com/security/selinux/concepts.html

12


https://source.android.com/security/selinux/concepts.html

Questions?

Thanks for your attention!

13



