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Outline

@ Overdetermined Systems

® Normal Equations

© Pseudoinverse

O Weighted Least Squares (optional)
@ Regression (optional)

@ Correlation (optional)

Learning outcomes: Understand the least squares framework
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Outline

Least Squares Methods in Practice

Vehicle mounted Ground Penetrating Radar mine detection system
Center for Geospatial Intelligence, Univ. of Missouri-Columbia, USA (geoint.missouri.edu/CGI2/research10.aspx)

GPR Antenna Array

Raw data and results of linear prediction pre-processing for a plastic

mine at 2 in, metal mine at 4 in, and plastic mine in 6 in in deep

P. Suanpang e.a.:

Relatlonshlp between learning outcomes and online accesses

Australasian Journal of Educational Technology, vol. 20 (3), 371-387, 2004
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Outline

Least Squares Methods in Practice

Various least-squares predictors
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Overdetermined Systems

Rectangular Matrices

Overdetermined linear system
e More equations than unknowns!

e Au=D>b: the m x n matrix A; m > n :

a1 a2 ... Qaip up b1
a1 a2 ... G2q U2 bo
am1 Am2 ... Gmn Un, bm

e A~! does not exist: no solution!

e Goal: to find the best solution u* when the system Au=Db
is overdetermined

e Too many equations; exact solutions are unlikely



Overdetermined Systems

Rectangular Matrices

Example 1: Fitting m = 4 measurements by a small number
n = 2 of parameters (e.g. linear regression in statistics)

e Straight line b, = u1 + usx

'LL1+U2'O = 1 b4i21
U1+U2'1 = 9 :
urt+us -2 =9 ~
Ku1+u2'3 = 21
| b1 =9 b3 =9
® ®
([ 1 0 1
1 1 Ui 9 . :
= by =1 :
1 3 [W} 9 4 I | I I
1 4 91 o 1 2 3 1

6
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Overdetermined Systems

Principle of Least Squares

Equations in Example 1 have no solution:

e Vector b is not a linear
combination of the two
column vectors from A:

0 1
1 (751 9
4 1

2

e e

e Line 1 4 8x through the
first two points is almost
certainly not the best line




Overdetermined Systems

Principle of Least Squares

e The error e, = b, — (1 4 8x) is large for other two points:
€3 = 16 and €4 = 12

e The squared error is £ =0+ 0 + 256 + 144 = 400!

Total squared error E(u) =e'e =|| e |2

=(b—-Au)T(b— Au)

5 T — ngn {(b— Au)T(b — Au)}

1 0 1
1 1 Ul . 9 .
L lm]=l 5| = ezpoa
1 4 N—— 21 residual error
[ —— u ~——
A b
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Overdetermined Systems

Principle of Least Squares

(Unweighted) least squares method:
e Choose u* to minimise the squared error:

E(u)=||b—Au|?= (b— Au)"(b— Au)
e Let's solve for the minimiser:
min {E(u) = (b — Au)"(b — Au)}
u

= min {bTb —2u'ATb + uTATAu}
u

OE(u) _
Ju =0

— —2ATb+2ATAu=0

— ATAu=ATb



Overdetermined Systems

Principle of Least Squares

Least squares estimate for u
e Solution u* of the “normal” equation ATAu* = ATb
e The left-hand and right-hand sides of the insolvable equation
Au = b are multiplied by AT
e Least squares is a projection of b onto the columns of A
e Matrix ATA is square, symmetric, and positive definite if A
has independent columns
o Positive definite ATA: the matrix is invertible; the normal
equation produces u* = (ATA)"1ATb
e Matrix ATA is square, symmetric, and positive semi-definite
if A has dependent columns
o If positive semi-definite ATA (or almost semi-definite, so its
determinant is close to zero: |[ATA|  0), then the QR
factorisation is much safer!

10/51



Overdetermined Systems

Principle of Least Squares: Completing Example 1

The normal equation ATAu* = ATh:

1 0 1
1 1 1 1 1 1 uy | _[1 1 1 1 9
0 1 3 4 1 3 usy | [0 1 3 4 9
1 4 21
PN 4 8 ui | _ 40
8 26 ul 120
w26 -8 40
[ ub | 20| — 4 || 120
[wp ] T 2
- [ ]-13]
Projection of b onto columns of A : Au*
e“=b—-—Au*=b-plp

Error for the best line: ez = by — (2 4 4x)
——

Px
Po=2p1 =6 ps=14; ps =18 — E(u*)=1+9+25+9 =44

11/51



Overdetermined Systems

Least Squares by Calculus (optional)

Setting to zero the derivative by u of the squared error:
E(u) =[e|?=(b—Au)" (b Au)=u'ATAu-2u" ATb+b'b

K f

Curved surface E(u .
. (W min {uTKu — 2qu}
: u

T

E(O) :H b ”2 = 8% (uTKu — 2qu) =0

= Ku=f = uw=K'f
= u = (ATA)'ATb

Ca(ur) = o |2

i Minimum squared error

u=0 ‘ > Eu*) = (b— Au*)" (b — Au*)
Minimiser u* :” b ”2 — || Au* ||2

Un
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Overdetermined Systems

Least Squares by Linear Algebra (optional)

Impossible equation Au = b:

e An attempt to represent b in m-dimensional space with a
linear combination of the n columns of A

e But those columns only give an n-dimensional plane inside the
much larger m-dimensional space

e Vector b is unlikely to lie in that plane, so Au = b is unlikely
to be solvable

13/51



Overdetermined Systems

Least Squares by Linear Algebra (optional)

e The vector Au* is the nearest to the b point in the plane

e Error vector e is orthogonal to the plane (column space):
Column 1: ale=0
Column 2: ale=0

.= ATe=0

The best Au™ is the projection p

14 /51



Overdetermined Systems

Least Squares by Linear Algebra (optional)

Error vector e = b — Au” is perpendicular to the column space:

AT
(column 1)T 0
: e=|:| = ATe=0
column n)T 0
( )

e This geometric equation ATe = 0 finds u*: the projection is
p = Au” (the combination of columns that is closest to b)

e It gives again the normal equation for u*:
ATe=AT(b-Au")=0 = ATAu"=A"b

Changing from the minimum in calculus to the projection in linear
algebra gives the right triangle with sides b, p, and e

15/51



Overdetermined Systems

Least Squares by Linear Algebra (optional)

e The perpendicular error vector e hits the column space in the
nearest to b point p = Au* where u* = (ATA)f1 ATb

e p is the projection of b onto the column space:

p—Au" = [A (ATAY1 AT] b = Pb

~
projection matrix P

e Au = b has no solution, but Au = p has one solution u*
® The smallest adjustment b — p to be in the column space
o Measurements are inconsistent in Au = b, but consistent in

Au*=p
. . . -1 . .
e Projection matrix P = A (ATA) AT is symmetric
e P2 =P as repeated projections give the same result
e P is m x m but only of rank n (as all its factors have rank n)

16 /51



Normal Equations

Least Squares: Example 2

The closest plane through 4 points in (z,y,b) space: b= C + Dz + Ey:

ATAu*=ATb

C+ Dx1+ Ey1 = by 1z 91 c b1 C*
C+D.’L’2+Ey2:b2 N 1 a2 Y2 D _ bo N ut = D*
C + Dz3 + Eys = b3 1 z3 y3 | |0 E*
C+D1‘4+Ey4=b4 1 x4 Y4 by 7(ATA)71ATb
A v -
b
- 100 0
000 1 0 1 2
01 2 ,=A= ; b=
1 10 2
o2 1 1 1 1
1 1 1

17 /51



Normal Equations
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Normal Equations
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Normal Equations

One More Example from Phylogenetics

Typical problem: Given n nodes and m = & 21)" inter-node
distances d;;, find v = 2n — 3 lengths ¢; of tree branches 1 3
It is the least-squares problem: forn =4, m =6, and v =5 \t t 4
1 3
: min {F = (t1+ta —di2)? + (t1 +to + t3 — d13)? t2> to <t
t=[tg,...,t
+(t1+to+t4 —d1a)? + (t2 + to + t3 — d23)? 2 4
+(ta 4+ to +ta — daa)? + (t3 + ta — dza)?}
® Normal equations VF(t) =0 = d

4 2 2 2 2 to 1 11 1 0 0 d12

2 3 11 t 1 1.1 0 0 0 d13

2 1 3 1 1 t2 |=]1 0 0 1 1 0 .

2 1 1 3 1 t3 01 0 1 0 1 d23

2 1 1 1 3 ty 00 1 0 1 1 dzi

3

® Solution:

to —0.5 0.25 0.25 0.25 0.25 —-0.5 312

t 05 025 025 —0.25 —0.25 0 d13

ty | = 05 —025 —025 025 0.25 0 d14

t3 0 025 —025 025 —025 05 d23

ty 0 —025 025 —025 025 05 dii

20 /51



Normal Equations

One More Example from Phylogenetics (cont.)

= lhuman ¢ = 2chimp L= 3gc:rilla
. 7= Zerimp 0.0965
Distances dij: =—3 . 0.1140 0.1180
7= dorangatan | 0.1849 0.2009 0.1947
. to t1 to t3 tq
Tree branch lengths found: 0054595 1 0.05325 | 0.05890 | 0.13580

o ———— = >2.Gorilla (3)
Human (1) & =-7" /\
/ T / AN
1004325 -~ 005897

/

¢ == dij

21/51



Normal Equations

http://www.scientificamerican.com/article.cfm?id=what-makes-us-human
http://www.naturalsciences.be/science/projects/gorilla/aboutgorilla/taxo
http://www.bbc.co.uk/news/science-environment-1228628
http://www.solarnavigator.net/animal_kingdom /animal_images/ |
http://thepeoplescube.com/current-truth/ |

Gorilla

0.00885

| 0.05325

So what does make us human?

22
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Normal Equations

How to Compute the Least Squares Solution u*

1) Solving the normal equations by the Gaussian elimination

The elimination S = LU ( W) reduces a square matrix S
to an upper triangular matrix U by using row operations, such
that their multipliers form a lower triangular matrix L

Note that elimination of S = ATA may be very unstable!

Why? — Because the condition number of ATA is the square
of the condition number of A

e Condition number of a positive definite matrix K is the ratio

max (K
of its max and min eigenvalues /\7(())

Condition number measures sensitivity of a linear system

The larger the number, the lesser the system’s stability...

23 /51



Normal Equations

How to Compute the Least Squares Solution u*?

2) Orthogonalization A = QR, when stability is in doubt
e Qis an m x n matrix with n orthonormal columns ([l )
e R is an n x n upper triangular matrix ( )

e This factoring reduces the normal equation ATAu = ATb to
a much simpler one:

(QR)TQRu* = (QR)™b = RTQ'QRu*=R'Q"b
I

o Multiplication Qb is very stable

e Back-substitution with the upper triangular R is very simple

e Producing Q and R takes twice as long as the mn? steps to
form ATA, but that extra cost gives a more reliable solution!

24 /51



Normal Equations

Modified Gram-Schmidt orthogonalisation

Orthonormal columns q, ..., q, of Q: sequential computation
from the columns ay,...,a, of A
— Vi —
q = Tvall = Vi = a
T
q2 = ||:§|| = V2 = az— (a2 ql) qi1
q; = ||VjH = Vv; = aj— 231 (aj qi) q;
1=
n—1 T
Vn _
An = T, = oV = ag— ) (aj qi> q;

i=1

25 /51



Normal Equations

Example: Orthogonalisation A = QR

10 0 1 0.5
10 1 1 w |05
A=l 1 0| M= 1P C=MWmT= | 05
11 1 1 0.5
0 0.5 0.5 0.5
0 0.5 0.5 0.5
ve=| |- [0 01 1] 0.5 05 | = 05 |’
1 0.5 0.5 0.5
=1
0.5
., | —05
=Tl = | o5

0.5

26 /51



Normal Equations

Example: Orthogonalisation A = QR (cont.)

10 0 0.5 —0.5 0.5
A Lo o) |05 | 05
1110 D= o5 |"RT| 05 "B 05
111 0.5 0.5 ~0.5
0 0.5 (0.5
1 0.5 0.5
va=|o |- [Ll0 1 0 1]} g5 0.5
1 0.5 | 0.5
=1 _
—0.5 0.5 0.5
0.5 0.5 0.5
—|lo 1o 1] 0.5 05 | — 0.5
0.5 | 0.5 —0.5

=0 by a pure chance!

27 /51



Normal Equations

Example: Orthogonalisation A = QR (cont.)

1
e Column-orthonormal matrixQ:% 1 _i _1
1 1 -1
e Upper triangular matrix R = QT A
1 1 1 1 1 8 (1) 2 1 1
=1l-1 -11 1 L 1ol=0T 0
1 -1 1 -1 Ll 00 —1
A Q R
1 00 1 -1 11~ N
Jlron o1 -1 31(1)
110 2|1 1 1 00 _1
1 1 1 1 1 -1

28 /51



Pseudoinverse

How to Compute the Least Squares Solution u*?

3) Singular Value Decomposition (SVD): A =UDV'
mXxn

e U - a column-orthonormal n x m matrix: UTU =1,

D = diag{o1,...,0,} — a diagonal n x n matrix of singular
values: DT =D

e V — an orthonormal n x n matrix: VI = V-1 VvIv =1,
ATA=VvD'UTUDVT = vD'DV'T = vD?VT

The most stable computation of u*!

VD2VTu*=VDU™b = D*VTu*=DU'b

D+t
———

= VTu* = (D?)'DU™b = u* =VD+UDb

29 /51



Pseudoinverse

How to Compute the Least Squares Solution u*?

u*=VDTU'b
e If rank(A) = n, i.e. all n singular values are non-zero:
o1 >09>...> 0, >0, then

1 1
D+:D1=diag{,...,}

01 On

e DT, called the “pseudoinverse” of D, in this case coincides
with the inverse diagonal matrix D!, so that DTD =1,

e The matrix AT = VD1 UT is the pseudoinverse of A: if
rank(A) =n, then ATA = VDTUTUDVT =1,

e Singular values specify stability: the matrix ATA is ill-
conditioned when o, is very small

o Extremely small singular values can be removed!

30/51



Pseudoinverse

Pseudoinverse

SVD A = UDV' — AV = UD or Av; = o;u;

e If A is a square matrix such that A~! exists, then the singular

values for A=! are 07! = % and A7 tu; = %vi
K2

e If A~! does not exist, then the pseudoinverse matrix At does
exist such that:

Ly, if i<r=rank(A)ie ifo; >0

0 for i>r

Pseudoinverse A1 of a matrix A: AT = VDTUT

e DT =diag {o],...,0, } where

-1 __ 1 . )
o =5 if 0;,>0
0 otherwise

31/51



Pseudoinverse

Pseudoinverse: Basic Properties

e Pseudoinverse matrix AT has the same rank r as A

e Pseudoinverse DV of the diagonal matrix D:
each positive singular value o > 0 is replaced by % and zero
singular values remain unchanged

e Product DD is as near to the identity matrix as possible

e The matrices AA™ and AT A are also as near as possible to
the m X m and n X n identity matrices, respectively

e AA™ —the m x m projection matrix onto the column space
of A

e ATA — the n x n projection matrix onto the row space of A

32/51



Pseudoinverse
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Pseudoinverse

Pseudoinverse A™: Example 2

A

rank r=1

4
AAT:[5 g}a Alflo,ulfﬁ{}]
1
1 2| svp AQ:O;UQZ%[—J
112 2 4 1
ATA:[ 8:|~> )\1:10;v1:%{2]
\ AziO;VzZ%{if}
S\/zDAvj:ajuj; 17=1,2 = o01=vV10; 090 =0
1 1
svo , _ L [1 1 VIO 0] 1 [1 2
V21 -1 0 0]y5l2 -1

N~

U D vT
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Pseudoinverse

Pseudoinverse A™: Example 2 (cont.)

spA_ L[ 1 VvVio o] 1 [1 2
211 -1 0 0502 -1
U D VT

1 2 11 0.5 0.5
+ 1 —
an=[ 1283 3]0 %)

11 1 2 0.2 04
+A =1 —
aa=iiy |1 2] ={04 o8]

35/51



Weighted LS

Weighted Least Squares (optional)

A small but important extension of the least squares problem

e The same rectangular A and a square weighting matrix W

Minimise | W (Au—b) ||>  Minimise || (WA)u — (Wb) ||

Normal equations for u*: (WA)T(WA)u* = (WA)T(Wb), or
ATWTWAu* = ATW Wb

No new math: just replace A and b by WA and Wb
e Symmetric positive definite combination matrix C = W'W
= ATCAu*=ATCb = ATC(b— Au*) =0
Random measurement errors (noise) e = b — Au:
e Equation system to be solved: Au=b —e
o Expected error Ele;] = 0
e Error variance o7 = E[e?] > 0

36 /51



Weighted LS

Weighted Least Squares

Independent errors e; with equal variances o7 = o

e Non-weighted least squares: C =1
e Minimising just eTe
Independent errors e; with different variances o
e The smaller the o2, the more reliable the measurement b; and the
higher the weight of that equation (C = diag{ai%, cey %}
e Minimising e"Ce
Interdependent errors ¢;:

e “Covariances’ o;; = 0;; = Ele;e;] also enter the inverse of C:

2
o7 g12 ... O1n
2
C—l 0921 g5 ... O2p
2
Onl1 Onp2 ... (op

37/51



Weighted LS

Weighted Least Squares: Probability Model

e The best u* accounting for weights: from ATCAu* = ATCb
e How reliable is u* = (ATCA)_1 ATCb comes from the

. . . 1.
matrix of variances and covariances (ATCA) in the u*

Interdependent Gaussian errors:

u zéex —1 u—b)'S™'(Au-—
PUAD.S) = e (g (Aub)TS (Au b))

e Maximum probable u® = arg max p(u|A, b, S) - from
u
ATS 1Au® =ATS b
e S = C~! - the covariance matrix E[ee"]

e The weighted LS solution u* coincides with the maximum
probable one u® under such weights

38 /51



Regression

Least Squares for Regression (optional)

Linear regression

Given a data set {(z;, fi): i =1,...,n}, find a linear function
f(x) = a + bx minimising the sum of squared deviations

n

L(a,b) = > (fi— f(@)* =) (fi — (a+bx;))?

=1 =1

e Search for the minimiser
(a*,b*) of the function
L(a,b) depending on
parameters a and b

e ¢ — an f-axis segment %
e b — a slope of the line

39/51



Regression

Linear Regression

Normal equations for the minimiser:

Lfat) _ 2fj(f (a+ba)) =0

oLlat) — 9 5 (fi = (a+ bw))ai =0

40 /51



Regression

Linear Regression

Least squares solution:

at 1 Sk =S5 St N “ nSee =57

nSpe—5S2
7 1 2 3 4 5
Z; -2 -1 0 1 2
fi|-09 —-04 06 13 2.1

[1(@)=054+077c S =0; Sy =10; S =2.7; Spp =77

x * 10-2.7—0-7.7 __ 27 __ 0.54

. a4 = "Fio—0z ~— 50 YU
k % _ —0-2.745-7.7 _ 38.5 _
b* = =500z = 5o = 077

41 /51



Regression

Linear Regression

Residual sum of squared deviations:

— 2875,S}s + nS?
* 2 fx
L{a®,b%) Zf NSy — 52

W—/
Sty

Example: L(0.54,0.77) = 7.43 — 2T210=22.T.01.745.7.72 _ 7 43 _ 7,387 — 0,043

5-10—02
i 1 2 3 4 5
;) -1 0 1 2
fi -09 -04 06 13 21
(@) ~1.00 —023 054 131 208
—f*(=) | 010 —0.17 0.06 —0.01 0.02

Sz = 0; Sz = 10; Sp = 2.7; Sy, =7.7; Spp = 7.43
Example: L(0.54,0.77) = 0.102 + (—0.17)2 4 0.06% + (—0.01)2 + 0.022 = 0.043

42 /51



Correlation

Correlation Matching (optional)

Least squares: 1D signals; constant contrast a and offset b

Given time or spatial data series {(t; = t(x;), fi = f(z;)): i=1,...,n;
21 < ...<xp} find a “contrast — offset”, f(z) = a + bt(z),
transformation minimising the sum of squared deviations

n n

L(a,b) =Y (f(z:) — (a+bt(z:))* = Y (fi — (a+ bt;))?

i=1 =1

Zi ti fi
0 0.5 —0.50
0.1 1.5 0.00
0.2 3.0 0.75
0.3 1.0 —-0.25
0.4 0.0 —-0.75
0.5 | —1.0 —1.25
0.6 | —3.0 —2.25
0.7 | —=1.5 —1.50
0.8 | —0.5 —1.00

© 00 O Ui W e,
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Correlation

Correlation Matching, continued

The minimiser (a*, b*) for the matching score L(a, b) is obtained similarly
to the linear regression:

e Normal equations:

3L7.87L7 n S [ a | Sy
8a_078b_0§[5t Stt:| b}_[ }

where St = Z ti; St = Z t,?; Sf = Z fis Sft = Z fiti
1=1 =1 i=1

e Solution: { Z* } = ﬁ { ‘S;t —ST,; [ gf }
tt—O% —S; ] ft
ot = #—S? (SttSf - StSft)7 b* = m (—StSf + nSft)

=a* =2 pr S =

n

m (—StSf + nSft)

= fr(x)= 3+ b () — )

44 /51



Correlation

Correlation Matching, continued

Minimum sum of squared deviations (f = %; t= % — mean signals)
n 2
. , (E 0@ -Dae-0)
L(a*gb*):Z(f(xz)_f—) i=1 _
=1 > (t(wi) — 1)
i=1

Signal variances: 0% = £ zn: (f(z) — f)z. o =213 (t(x:) - 1)°

n
Signal covariance: oy, = 1 3 (f(z;) — f) (t(zi) — ©)
1

i
Correlation (matching score): Cpp = 21 —1 < Cp <1

ofot

Matching distance: D}, = L(a™,b") = naf ( C )
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Correlation

Correlation Matching: An Example

i T ti f’L
1 0 0.5 —0.50
2 01 1.5 0.00
3 0.2 3.0 0.75
4 0.3 1.0 —-0.25
5 04 0.0 —0.75
6 05|—-10 -1.25
7 06| -30 -—225
8 07| —-15 -—150
9 08| —-05 -—1.00

Sy =0; Sy = 25; Sy = —6.75; Sy = 11.3125; Sy = 12.5 =
b* = 5552 (—0- (—6.75) +9-12.5) = 0.5; a* = =& —0.5- 3 = —0.75

= f(z) = =075+ 0.5 t(z); f=—0.75; 0% =85 o2 = B, g, = 125

éCft: 735 =1 D;t:Q%(1—12):O
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Correlation

Probability Model of Matching Signals

Correlation matching follows from a simple probability model of f:

e Transformed template ¢ corrupted by a centred independent random
Gaussian noise 7: fori =1,...,n,

(atbii))2
fi=a+bli+ri = p(r;) = - exp (—7”1 (atbt:)) )

n X 3 (fi=(atbt))?
Pau(fIt) = l:[lp(m) = Gozen P | =T gy

o Maximum likelihood between f and ¢ by transforming parameters a
and b results in the correlation matching:

maxPab(f|t) = mmz — (a+bt;))?
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Correlation

Search for the Best Matching Position

e Matching a template t = [t; : ¢ =1,...,n] to a much longer data
sequence f =[f;: j=1,....,N|; N>n

e Goal position j* maximises the correlation C't; (or minimises the
distance Dy;) between ¢ and the segment [f;1; : i =1,...,n] of f

T

J
1 1 1
19 20 21

) IS I [ E—— E— ) I—
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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Correlation

2D Correlation: Constant Contrast—Offset

e 2D m x n template ¢t and M x N image f; m < M; n < N:

t = [tuy: 7 =0,...,n—1; j'=0,...,m—1]
fo= [fy: i=0,...,N—1; j=0,...,M—1]

e An example:
Eye template ¢ 32 x 18 pixels: =
Facial image f 200 x 200 pixels:

Moving window matching:
Searching for a window position
(i*,7*) in f such that the correlation
Cy, (the distance Dy;) between the
template ¢ and the underlying region
of the image f in the moving window
is maximal (minimal)
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Correlation

2D correlation: Constant Contrast—Offset

Distance between the template ¢t and the moving window in position
(,7) in the image f:

n—1m—1 _ 2
n—1m—1 Z Z Jitir J+J't

_ 9 i'=0 j'=0
= Fivirjvir = -
=0 5'=0 Z t2 P
i=1

e Centred signals: fi+i’,j+j’ = fi+i’,j+j' — f[’Lj] and tl‘/J‘/ = tl‘/’j/ —t

_ n—1m-—1
e Mean for the moving window: fj;;; = - Z > figrr g
Ojlf
e Variance for the moving window:
n—1m—1
u] mn Z Z e f[w])
=0 /=0

50 /51



Correlation

2D correlation: Constant Contrast—Offset

n—1m—1

o Fixed template mean: = L. 3~ Z tir jr
i'=0j'=

e Fixed template variance:

n—1m—1

E E t/ / —_
=045'=0
e Window—template covariance:
n—1m—1

1 —
Z Z (firirjir = Fugy) (tirjr — 1)

Tl =
=0 j'=0

e Correlation matching: Cf.[;;) = Uif[t ;Jat —1 < Cpppij) <1
ij

. . * _ * px) 2
e Distance: th:[l-j] = L(a",b") = No%.1:4] (1 - Cft:[ij])
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