Programming 1n Logic: Prolog

Prolog Execution &
Data Object Matching
Readings: Read Sections 2.1 & 2.2
of Bratko

MB: 28 Feb 2001 CS360 Lecture 2



Review

Prolog knowledge base = relation collection.
Relation 1dentified by name/arity.

Relation defined by clauses whose heads agree
with that 1d (1.e., name & number of
arguments)

MB: 28 Feb 2001 CS360 Lecture 2



Review cont’d

Clauses have following forms:

head :- body .

head .

:- body .
Queries are entered by the user (1.€., not in
knowledge base) and have form of clause body.

MB: 28 Feb 2001 CS360 Lecture 2



Execution Examples

Knowledge Base

female(mary).

siblingOf(mary, peter).

sisterOf(S,P) :- siblingOf(S,P), female(S).
Queries:

female(X).

X = mary ?

MB: 28 Feb 2001 CS360 Lecture 2



Execution Examples cont’d

Query: sisterOf(X, peter).

sisterOf(X, peter) matches sisterOf(S,P)
with X binding with § and pefer binding with P

Now its body with bindings becomes the query:
siblingOf (X, peter), female(X)

siblingOf(X, peter) matches siblingOf(mary, peter)
with X binding with mary

Now female(mary) becomes query, and done.

Returns success and X = mary

MB: 28 Feb 2001 CS360 Lecture 2



Prolog Program Execution

Given query, Q, & knowledge base, B, Prolog:

For each top-level term, T, in Q Prolog:
Tries to match T against the head of a clause in KB.
If 1t fails to find one it returns failure.

If 1t finds one then the body of the clause becomes the
current query and this process recurses.

If that process succeeds then Prolog returns success along
with any bindings used to succeed.

If 1t fails then Prolog tries this loop again (1.e., tries to
match T against the head of a different clause in KB).

MB: 28 Feb 2001 CS360 Lecture 2



Prolog Program Execution cont’d

This process bottoms out either when a term
matches a fact or when a term matches certain
system relations that are guaranteed to succeed
(e.g., write/1).

Arguments to a relation are never “evaluated”,
they are simply patterns. E.g., 1n b :- a, c(a).
The first a 1s a relation, the second a 1s a
pattern.

MB: 28 Feb 2001 CS360 Lecture 2



Types of Data Objects

Simple Data Objects
Atoms

Numbers
Variables

Structured Data Objects

MB: 28 Feb 2001 CS360 Lecture 2



Stmple Data Objects: Atoms

Atoms can be formed from:

Letters, digits, and underscore - must begin with
lower case letter (e.g., aB3 50)

Some sequences of special characters (e.g., <--->),
some are already defined (e.g., “:-7, “+7, ...).

Strings of characters enclosed 1n single quotes
(e.g., TomJones")

MB: 28 Feb 2001 CS360 Lecture 2



Simple Data Objects: Numbers

Integers (e.g., 3, -15)
Reals (e.g., -0.0035)

MB: 28 Feb 2001 CS360 Lecture 2

10



Stmple Data Objects: Variables

Syntax: Strings of letters, digits, underscores

must begin with either upper case letter or an
underscore (e.g., X, I, ).

Variables:
can have a value (1.e., bound) or be unbound.

are not declared - created by use.
are not “typed”.

MB: 28 Feb 2001 CS360 Lecture 2 11



More About Prolog Variables

Prolog variables start out unbound and get
bound via matching, e.g., X =point(3,4).

Once a variable 1s instantiated, 1t can never
become unbound nor can its value ever change.

Assume X 1s currently unbound, consider the
code: “X=3, X=5", whathappens?

MB: 28 Feb 2001 CS360 Lecture 2 12



Anonymous Variables

Variables used only once 1n a clause do not need a
name. Unnamed variables are called anonymous
variables.

Anonymous variable written as underscore (_ )

Values are not reported for anonymous variables
appearing in queries.

?- motherOf(Mother, ).
Mother = mary ?

MB: 28 Feb 2001 CS360 Lecture 2 13



Scope of Variables

The lexical scope of non-anonymous variables
1s one clause.

fatherOf(F,C) :- parentOf(F,C), male(F).
Each anonymous variable occurrence represents
a new variable:

parentOf(_, ) matches parentOf(ann, mary) but
parentOf(X,X) would not match.

MB: 28 Feb 2001 CS360 Lecture 2 14



Structured Data Objects

Structured data objects have a functor name and
arguments:

loves(john, mary)
single(john)
The functor name must be an atom.

Arguments can be structures
takesCourse(person(mike, barley), cs360)

MB: 28 Feb 2001 CS360 Lecture 2

15



MB: 28 Feb 2001

Structures as Trees

takesCourse(person(mike, barley), cs360)

takesCourse
‘}r5< cs360
mike barley

CS360 Lecture 2

16



Matching

The most important operation on data objects 1s
matching.

Matching 1s invoked two different ways.

Explicitly via the “=* operator, e.g., X =5
Implicitly when Prolog tries to match a goal against

its knowledge base.

MB: 28 Feb 2001 CS360 Lecture 2 17



Implicit Matching Against Heads of
Clauses 1n the Knowledge Base

What happens when we try to match a goal
against the head of a clause in the knowledge
base?

For example, matching the query meeting(X,
john) against the clause head meeting(Y, X), are
the X’s 1in the same scope?

No, 1n effect, the variables in the clause are
made unique with respect to the goal. E.g.,
meeting(Y’, X°)

MB: 28 Feb 2001 CS360 Lecture 2 18



Matching in General

Given two non-variables, 1f they aren’t the same
type of non-variable then they won’t match.

art doesn’t match 5
art doesn’t match art(101)
5 doesn’t match 5.0

MB: 28 Feb 2001 CS360 Lecture 2

19



Matching Atoms

An atom only matches an atom 1f 1t 1s the same
atom, e.g., henry matches henry, but henry
doesn’t match hank.

What about henry and ‘henry’?

It probably depends upon the version of Prolog
being used. For SICStus Prolog, they match.

Remember that ‘Henry’ 1s an atom, while Henry
1s a variable!

MB: 28 Feb 2001 CS360 Lecture 2 20



Matching Numbers

Numbers only match if they are the same
number and type of number:

56 matches 56, but not 56.0.

MB: 28 Feb 2001 CS360 Lecture 2

21



Matching Structures

Structures only match 1if they have the same
functor name, the same arity, and each of the
arguments match.

The expression 5 + 3 1s really the structure
+(5, 3).

If we asked Prolog the query § =5 + 3
what do you think the answer would be?

MB: 28 Feb 2001 CS360 Lecture 2 22



Matching Bound Variable
& Anything

As far as matching 1s concerned, a bound
variable 1s just 1ts value:

so 1f 1t 1s bound to an atom, then matching proceeds
according to the rules for matching atoms, etc.

MB: 28 Feb 2001 CS360 Lecture 2 23



Matching Unbound Variables with
non-Structures

Matching an unbound variable to an atom or a
number causes that variable to become bound
to that value.

Matching an unbound variable with an unbound
variable causes them to share their eventual
binding.

Assume X and Y are unbound, then

X=Y X=15 causes both X and Y to be bound to 5

MB: 28 Feb 2001 CS360 Lecture 2 24



Matching Unbound Variables
with Structures

If the unbound variable does not appear 1nside
the structure then the variable 1s bound to the
structure.

X = name(mike, Y)

If the unbound variable appears 1nside the
structure then what happens depends upon
which Prolog you’re using. An example:

X = name(mike, X)

MB: 28 Feb 2001 CS360 Lecture 2 25



The Occurs Check

Some Prologs implement the occurs check. In
these Prologs 1f the unbound variable being
matched occurs within the structure then the
match fails and no instantiation occurs.

Other Prologs don’t check! In these Prologs 1f
the unbound variable being matched occurs
within the structure then the match succeeds
and the variable 1s instantiated to that structure.

MB: 28 Feb 2001 CS360 Lecture 2 26



Eftect of No “Occurs Check™

In these Prologs, what 1s the result of matching

X = name(mike, X)

X 1s 1nstantiated to an infinite data structure:
name(mike, name(mike, name(mike,...)))

What happens 1f Prolog tries to print out the
value of such a structure?

Can such an infinite data structure ever be
useful? Why/how?

MB: 28 Feb 2001 CS360 Lecture 2 27



Quick Quiz

Assume all variables are initially unbound, what
are the results of matching:

(0 Tl

- J

5=15.0

X = art(Y, bart(sam(Z, X)))

a(d, b(X, c(Y))) = a(X, b(Z,c(2)))
a(Z, X) = a(X, b(Z))

MB: 28 Feb 2001 CS360 Lecture 2

28



a(3, b(X, c(Y)))= a(X, b(Z,c(2)))

Name and arity agree, match arguments X=5
X 1s unbound, so it matches 5 (& 1s bound to
it)
Now must try to match b(3, ¢(Y)) to b(Z,c(Z))

Name and arity match, so try matching arguments

5 = Z: Z 1s unbound, so they match and Z gets bound to 5

c(Y) = c¢(5): Y 1s unbound, so they match and Y gets
bound to 5

As a result of the matching, the structures have been
instantiated to a(5, b(3, ¢(5))).

MB: 28 Feb 2001 CS360 Lecture 2 29



Quick Quiz cont’d

What the difference between a structured data
object and a relation (remember they both have
a name and an arity)?

Given a(X) :- b(5, c), c(b(5, c)). What type of
term 1s the first occurrence of b(3, ¢) ? What

type of term 1s the second occurrence of b(3J,
c)?

MB: 28 Feb 2001 CS360 Lecture 2 30



Summary

Prolog computes answer to query by matching
query terms against heads of clauses in KB,

when match occurs computation recurses on
body of matched clause (with current

bindings).
If Prolog succeeds then successful bindings of
query variables are returned as part of answer.

Relation arguments are not evaluated.

MB: 28 Feb 2001 CS360 Lecture 2 31



Summary cont’d

A data object 1s either a variable or a constant.
Variables:

either bound or unbound.

either bound via explicit matching or implicitly via
subgoal matching.

once bound, the value can never be unbound nor
change.

Constants can either be:

atoms, numbers, or structures.
MB: 28 Feb 2001 CS360 Lecture 2

32



Summary cont’d

Structures have a functor name and an arity.
Matching:
without unbound variables 1s trivial.

so 1s unbound variable against non-structure

so 1s unbound variable against structure not
containing that unbound variable

Result of matching unbound variable against

structure containing that variable depends on
whether that Prolog implemented occurs check.

MB: 28 Feb 2001 CS360 Lecture 2 33



