
MB: 28 Feb 2001 CS360 Lecture 2 1

Programming in Logic: Prolog

Prolog Execution &
Data Object Matching

Readings: Read Sections 2.1 & 2.2
of Bratko

MB: 28 Feb 2001 CS360 Lecture 2 2

Review

  Prolog knowledge base = relation collection.

 Relation identified by name/arity.

 Relation defined by clauses whose heads agree
 with that id (i.e., name & number of
 arguments)

MB: 28 Feb 2001 CS360 Lecture 2 3

Review cont’d

 Clauses have following forms:
–  head :- body .
–  head .
–  :- body .

 Queries are entered by the user (i.e., not in
 knowledge base) and have form of clause body.

MB: 28 Feb 2001 CS360 Lecture 2 4

Execution Examples

 Knowledge Base
–  female(mary).
–  siblingOf(mary, peter).
–  sisterOf(S,P) :- siblingOf(S,P), female(S).

 Queries:
–  female(X).
–  X = mary ?

MB: 28 Feb 2001 CS360 Lecture 2 5

Execution Examples cont’d

  Query: sisterOf(X, peter).
  sisterOf(X, peter) matches sisterOf(S,P)

 with X binding with S and peter binding with P
  Now its body with bindings becomes the query:

 siblingOf(X,peter), female(X)
  siblingOf(X,peter) matches siblingOf(mary, peter)

 with X binding with mary
  Now female(mary) becomes query, and done.
  Returns success and X = mary

MB: 28 Feb 2001 CS360 Lecture 2 6

Prolog Program Execution

 Given query, Q, & knowledge base, B, Prolog:
–  For each top-level term, T, in Q Prolog:

 Tries to match T against the head of a clause in KB.
 If it fails to find one it returns failure.
 If it finds one then the body of the clause becomes the

 current query and this process recurses.
 If that process succeeds then Prolog returns success along

 with any bindings used to succeed.
 If it fails then Prolog tries this loop again (i.e., tries to

 match T against the head of a different clause in KB).

MB: 28 Feb 2001 CS360 Lecture 2 7

Prolog Program Execution cont’d

 This process bottoms out either when a term
 matches a fact or when a term matches certain
 system relations that are guaranteed to succeed
 (e.g., write/1).

 Arguments to a relation are never “evaluated”,
 they are simply patterns. E.g., in b :- a, c(a).
 The first a is a relation, the second a is a
 pattern.

MB: 28 Feb 2001 CS360 Lecture 2 8

Types of Data Objects

  Simple Data Objects
–  Atoms
–  Numbers
–  Variables

  Structured Data Objects

MB: 28 Feb 2001 CS360 Lecture 2 9

Simple Data Objects: Atoms

 Atoms can be formed from:
–  Letters, digits, and underscore - must begin with

 lower case letter (e.g., aB3_5C)
–  Some sequences of special characters (e.g., <--->),

 some are already defined (e.g., “:-”, “+”, ...).
–  Strings of characters enclosed in single quotes

 (e.g., ‘TomJones’)

MB: 28 Feb 2001 CS360 Lecture 2 10

Simple Data Objects: Numbers

  Integers (e.g., 3, -15)
 Reals (e.g., -0.0035)

MB: 28 Feb 2001 CS360 Lecture 2 11

Simple Data Objects: Variables

  Syntax: Strings of letters, digits, underscores
–  must begin with either upper case letter or an

 underscore (e.g., X, _I, _).
 Variables:

–  can have a value (i.e., bound) or be unbound.
–  are not declared - created by use.
–  are not “typed”.

MB: 28 Feb 2001 CS360 Lecture 2 12

More About Prolog Variables

  Prolog variables start out unbound and get
 bound via matching, e.g., X =point(3,4).

 Once a variable is instantiated, it can never
 become unbound nor can its value ever change.

 Assume X is currently unbound, consider the
 code : “X = 3, X = 5”, what happens?

MB: 28 Feb 2001 CS360 Lecture 2 13

Anonymous Variables

  Variables used only once in a clause do not need a
 name. Unnamed variables are called anonymous
 variables.

  Anonymous variable written as underscore (_)
  Values are not reported for anonymous variables

 appearing in queries.
  ?- motherOf(Mother, _).

 Mother = mary ?

MB: 28 Feb 2001 CS360 Lecture 2 14

Scope of Variables

 The lexical scope of non-anonymous variables
 is one clause.
–  fatherOf(F,C) :- parentOf(F,C), male(F).

 Each anonymous variable occurrence represents
 a new variable:
–  parentOf(_, _) matches parentOf(ann, mary) but

 parentOf(X,X) would not match.

MB: 28 Feb 2001 CS360 Lecture 2 15

Structured Data Objects

  Structured data objects have a functor name and
 arguments:
–  loves(john, mary)
–  single(john)

 The functor name must be an atom.
 Arguments can be structures

 takesCourse(person(mike, barley), cs360)

MB: 28 Feb 2001 CS360 Lecture 2 16

Structures as Trees

takesCourse

person

mike
 barley

cs360

takesCourse(person(mike, barley), cs360)

MB: 28 Feb 2001 CS360 Lecture 2 17

Matching

 The most important operation on data objects is
 matching.

 Matching is invoked two different ways.
–  Explicitly via the “=“ operator, e.g., X = 5
–  Implicitly when Prolog tries to match a goal against

 its knowledge base.

MB: 28 Feb 2001 CS360 Lecture 2 18

Implicit Matching Against Heads of
 Clauses in the Knowledge Base

 What happens when we try to match a goal
 against the head of a clause in the knowledge
 base?

  For example, matching the query meeting(X,
 john) against the clause head meeting(Y, X), are
 the X’s in the same scope?

 No, in effect, the variables in the clause are
 made unique with respect to the goal. E.g.,
 meeting(Y’, X’)

MB: 28 Feb 2001 CS360 Lecture 2 19

Matching in General

 Given two non-variables, if they aren’t the same
 type of non-variable then they won’t match.
–  art doesn’t match 5
–  art doesn’t match art(101)
–  5 doesn’t match 5.0

MB: 28 Feb 2001 CS360 Lecture 2 20

Matching Atoms

 An atom only matches an atom if it is the same
 atom, e.g., henry matches henry, but henry
 doesn’t match hank.

 What about henry and ‘henry’?
  It probably depends upon the version of Prolog

 being used. For SICStus Prolog, they match.
 Remember that ‘Henry’ is an atom, while Henry

 is a variable!

MB: 28 Feb 2001 CS360 Lecture 2 21

Matching Numbers

 Numbers only match if they are the same
 number and type of number:
–  56 matches 56, but not 56.0.

MB: 28 Feb 2001 CS360 Lecture 2 22

Matching Structures

  Structures only match if they have the same
 functor name, the same arity, and each of the
 arguments match.

 The expression 5 + 3 is really the structure
 +(5, 3).

  If we asked Prolog the query 8 = 5 + 3
 what do you think the answer would be?

MB: 28 Feb 2001 CS360 Lecture 2 23

Matching Bound Variable
& Anything

 As far as matching is concerned, a bound
 variable is just its value:
–  so if it is bound to an atom, then matching proceeds

 according to the rules for matching atoms, etc.

MB: 28 Feb 2001 CS360 Lecture 2 24

Matching Unbound Variables with
 non-Structures

 Matching an unbound variable to an atom or a
 number causes that variable to become bound
 to that value.

 Matching an unbound variable with an unbound
 variable causes them to share their eventual
 binding.
–  Assume X and Y are unbound, then
–  X = Y, X = 5 causes both X and Y to be bound to 5

MB: 28 Feb 2001 CS360 Lecture 2 25

Matching Unbound Variables
with Structures

  If the unbound variable does not appear inside
 the structure then the variable is bound to the
 structure.
–  X = name(mike, Y)

  If the unbound variable appears inside the
 structure then what happens depends upon
 which Prolog you’re using. An example:
–  X = name(mike, X)

MB: 28 Feb 2001 CS360 Lecture 2 26

The Occurs Check

  Some Prologs implement the occurs check. In
 these Prologs if the unbound variable being
 matched occurs within the structure then the
 match fails and no instantiation occurs.

 Other Prologs don’t check! In these Prologs if
 the unbound variable being matched occurs
 within the structure then the match succeeds
 and the variable is instantiated to that structure.

MB: 28 Feb 2001 CS360 Lecture 2 27

Effect of No “Occurs Check”

  In these Prologs, what is the result of matching
 X = name(mike, X) ?

 X is instantiated to an infinite data structure:
 name(mike, name(mike, name(mike,…)))

 What happens if Prolog tries to print out the
 value of such a structure?

 Can such an infinite data structure ever be
 useful? Why/how?

MB: 28 Feb 2001 CS360 Lecture 2 28

Quick Quiz

 Assume all variables are initially unbound, what
 are the results of matching:
–  a = ‘a’
–  a = 5
–  5 = 5.0
–  X = art(Y, bart(sam(Z, X)))
–  a(5, b(X, c(Y))) = a(X, b(Z,c(Z)))
–  a(Z, X) = a(X, b(Z))

MB: 28 Feb 2001 CS360 Lecture 2 29

a(5, b(X, c(Y)))= a(X, b(Z,c(Z)))

 Name and arity agree, match arguments X=5
 X is unbound, so it matches 5 (& is bound to
 it)
–  Now must try to match b(5, c(Y)) to b(Z,c(Z))
–  Name and arity match, so try matching arguments

 5 = Z: Z is unbound, so they match and Z gets bound to 5
 c(Y) = c(5): Y is unbound, so they match and Y gets

 bound to 5
–  As a result of the matching, the structures have been

 instantiated to a(5, b(5, c(5))).

MB: 28 Feb 2001 CS360 Lecture 2 30

Quick Quiz cont’d

 What the difference between a structured data
 object and a relation (remember they both have
 a name and an arity)?

 Given a(X) :- b(5, c), c(b(5, c)). What type of
 term is the first occurrence of b(5, c) ? What
 type of term is the second occurrence of b(5,
 c)?

MB: 28 Feb 2001 CS360 Lecture 2 31

Summary

  Prolog computes answer to query by matching
 query terms against heads of clauses in KB,
 when match occurs computation recurses on
 body of matched clause (with current
 bindings).

  If Prolog succeeds then successful bindings of
 query variables are returned as part of answer.

 Relation arguments are not evaluated.

MB: 28 Feb 2001 CS360 Lecture 2 32

Summary cont’d

 A data object is either a variable or a constant.
 Variables:

–  either bound or unbound.
–  either bound via explicit matching or implicitly via

 subgoal matching.
–  once bound, the value can never be unbound nor

 change.
 Constants can either be:

–  atoms, numbers, or structures.

MB: 28 Feb 2001 CS360 Lecture 2 33

Summary cont’d

  Structures have a functor name and an arity.
 Matching:

–  without unbound variables is trivial.
–  so is unbound variable against non-structure
–  so is unbound variable against structure not

 containing that unbound variable
 Result of matching unbound variable against

 structure containing that variable depends on
 whether that Prolog implemented occurs check.

