
MB: 28 Feb 2001 CS360 Lecture 2 1

Programming in Logic: Prolog

Prolog Execution &
Data Object Matching

Readings: Read Sections 2.1 & 2.2
of Bratko

MB: 28 Feb 2001 CS360 Lecture 2 2

Review

  Prolog knowledge base = relation collection.

 Relation identified by name/arity.

 Relation defined by clauses whose heads agree
 with that id (i.e., name & number of
 arguments)

MB: 28 Feb 2001 CS360 Lecture 2 3

Review cont’d

 Clauses have following forms:
–  head :- body .
–  head .
–  :- body .

 Queries are entered by the user (i.e., not in
 knowledge base) and have form of clause body.

MB: 28 Feb 2001 CS360 Lecture 2 4

Execution Examples

 Knowledge Base
–  female(mary).
–  siblingOf(mary, peter).
–  sisterOf(S,P) :- siblingOf(S,P), female(S).

 Queries:
–  female(X).
–  X = mary ?

MB: 28 Feb 2001 CS360 Lecture 2 5

Execution Examples cont’d

  Query: sisterOf(X, peter).
  sisterOf(X, peter) matches sisterOf(S,P)

 with X binding with S and peter binding with P
  Now its body with bindings becomes the query:

 siblingOf(X,peter), female(X)
  siblingOf(X,peter) matches siblingOf(mary, peter)

 with X binding with mary
  Now female(mary) becomes query, and done.
  Returns success and X = mary

MB: 28 Feb 2001 CS360 Lecture 2 6

Prolog Program Execution

 Given query, Q, & knowledge base, B, Prolog:
–  For each top-level term, T, in Q Prolog:

 Tries to match T against the head of a clause in KB.
 If it fails to find one it returns failure.
 If it finds one then the body of the clause becomes the

 current query and this process recurses.
 If that process succeeds then Prolog returns success along

 with any bindings used to succeed.
 If it fails then Prolog tries this loop again (i.e., tries to

 match T against the head of a different clause in KB).

MB: 28 Feb 2001 CS360 Lecture 2 7

Prolog Program Execution cont’d

 This process bottoms out either when a term
 matches a fact or when a term matches certain
 system relations that are guaranteed to succeed
 (e.g., write/1).

 Arguments to a relation are never “evaluated”,
 they are simply patterns. E.g., in b :- a, c(a).
 The first a is a relation, the second a is a
 pattern.

MB: 28 Feb 2001 CS360 Lecture 2 8

Types of Data Objects

  Simple Data Objects
–  Atoms
–  Numbers
–  Variables

  Structured Data Objects

MB: 28 Feb 2001 CS360 Lecture 2 9

Simple Data Objects: Atoms

 Atoms can be formed from:
–  Letters, digits, and underscore - must begin with

 lower case letter (e.g., aB3_5C)
–  Some sequences of special characters (e.g., <--->),

 some are already defined (e.g., “:-”, “+”, ...).
–  Strings of characters enclosed in single quotes

 (e.g., ‘TomJones’)

MB: 28 Feb 2001 CS360 Lecture 2 10

Simple Data Objects: Numbers

  Integers (e.g., 3, -15)
 Reals (e.g., -0.0035)

MB: 28 Feb 2001 CS360 Lecture 2 11

Simple Data Objects: Variables

  Syntax: Strings of letters, digits, underscores
–  must begin with either upper case letter or an

 underscore (e.g., X, _I, _).
 Variables:

–  can have a value (i.e., bound) or be unbound.
–  are not declared - created by use.
–  are not “typed”.

MB: 28 Feb 2001 CS360 Lecture 2 12

More About Prolog Variables

  Prolog variables start out unbound and get
 bound via matching, e.g., X =point(3,4).

 Once a variable is instantiated, it can never
 become unbound nor can its value ever change.

 Assume X is currently unbound, consider the
 code : “X = 3, X = 5”, what happens?

MB: 28 Feb 2001 CS360 Lecture 2 13

Anonymous Variables

  Variables used only once in a clause do not need a
 name. Unnamed variables are called anonymous
 variables.

  Anonymous variable written as underscore (_)
  Values are not reported for anonymous variables

 appearing in queries.
  ?- motherOf(Mother, _).

 Mother = mary ?

MB: 28 Feb 2001 CS360 Lecture 2 14

Scope of Variables

 The lexical scope of non-anonymous variables
 is one clause.
–  fatherOf(F,C) :- parentOf(F,C), male(F).

 Each anonymous variable occurrence represents
 a new variable:
–  parentOf(_, _) matches parentOf(ann, mary) but

 parentOf(X,X) would not match.

MB: 28 Feb 2001 CS360 Lecture 2 15

Structured Data Objects

  Structured data objects have a functor name and
 arguments:
–  loves(john, mary)
–  single(john)

 The functor name must be an atom.
 Arguments can be structures

 takesCourse(person(mike, barley), cs360)

MB: 28 Feb 2001 CS360 Lecture 2 16

Structures as Trees

takesCourse

person

mike barley

cs360

takesCourse(person(mike, barley), cs360)

MB: 28 Feb 2001 CS360 Lecture 2 17

Matching

 The most important operation on data objects is
 matching.

 Matching is invoked two different ways.
–  Explicitly via the “=“ operator, e.g., X = 5
–  Implicitly when Prolog tries to match a goal against

 its knowledge base.

MB: 28 Feb 2001 CS360 Lecture 2 18

Implicit Matching Against Heads of
 Clauses in the Knowledge Base

 What happens when we try to match a goal
 against the head of a clause in the knowledge
 base?

  For example, matching the query meeting(X,
 john) against the clause head meeting(Y, X), are
 the X’s in the same scope?

 No, in effect, the variables in the clause are
 made unique with respect to the goal. E.g.,
 meeting(Y’, X’)

MB: 28 Feb 2001 CS360 Lecture 2 19

Matching in General

 Given two non-variables, if they aren’t the same
 type of non-variable then they won’t match.
–  art doesn’t match 5
–  art doesn’t match art(101)
–  5 doesn’t match 5.0

MB: 28 Feb 2001 CS360 Lecture 2 20

Matching Atoms

 An atom only matches an atom if it is the same
 atom, e.g., henry matches henry, but henry
 doesn’t match hank.

 What about henry and ‘henry’?
  It probably depends upon the version of Prolog

 being used. For SICStus Prolog, they match.
 Remember that ‘Henry’ is an atom, while Henry

 is a variable!

MB: 28 Feb 2001 CS360 Lecture 2 21

Matching Numbers

 Numbers only match if they are the same
 number and type of number:
–  56 matches 56, but not 56.0.

MB: 28 Feb 2001 CS360 Lecture 2 22

Matching Structures

  Structures only match if they have the same
 functor name, the same arity, and each of the
 arguments match.

 The expression 5 + 3 is really the structure
 +(5, 3).

  If we asked Prolog the query 8 = 5 + 3
 what do you think the answer would be?

MB: 28 Feb 2001 CS360 Lecture 2 23

Matching Bound Variable
& Anything

 As far as matching is concerned, a bound
 variable is just its value:
–  so if it is bound to an atom, then matching proceeds

 according to the rules for matching atoms, etc.

MB: 28 Feb 2001 CS360 Lecture 2 24

Matching Unbound Variables with
 non-Structures

 Matching an unbound variable to an atom or a
 number causes that variable to become bound
 to that value.

 Matching an unbound variable with an unbound
 variable causes them to share their eventual
 binding.
–  Assume X and Y are unbound, then
–  X = Y, X = 5 causes both X and Y to be bound to 5

MB: 28 Feb 2001 CS360 Lecture 2 25

Matching Unbound Variables
with Structures

  If the unbound variable does not appear inside
 the structure then the variable is bound to the
 structure.
–  X = name(mike, Y)

  If the unbound variable appears inside the
 structure then what happens depends upon
 which Prolog you’re using. An example:
–  X = name(mike, X)

MB: 28 Feb 2001 CS360 Lecture 2 26

The Occurs Check

  Some Prologs implement the occurs check. In
 these Prologs if the unbound variable being
 matched occurs within the structure then the
 match fails and no instantiation occurs.

 Other Prologs don’t check! In these Prologs if
 the unbound variable being matched occurs
 within the structure then the match succeeds
 and the variable is instantiated to that structure.

MB: 28 Feb 2001 CS360 Lecture 2 27

Effect of No “Occurs Check”

  In these Prologs, what is the result of matching
 X = name(mike, X) ?

 X is instantiated to an infinite data structure:
 name(mike, name(mike, name(mike,…)))

 What happens if Prolog tries to print out the
 value of such a structure?

 Can such an infinite data structure ever be
 useful? Why/how?

MB: 28 Feb 2001 CS360 Lecture 2 28

Quick Quiz

 Assume all variables are initially unbound, what
 are the results of matching:
–  a = ‘a’
–  a = 5
–  5 = 5.0
–  X = art(Y, bart(sam(Z, X)))
–  a(5, b(X, c(Y))) = a(X, b(Z,c(Z)))
–  a(Z, X) = a(X, b(Z))

MB: 28 Feb 2001 CS360 Lecture 2 29

a(5, b(X, c(Y)))= a(X, b(Z,c(Z)))

 Name and arity agree, match arguments X=5
 X is unbound, so it matches 5 (& is bound to
 it)
–  Now must try to match b(5, c(Y)) to b(Z,c(Z))
–  Name and arity match, so try matching arguments

 5 = Z: Z is unbound, so they match and Z gets bound to 5
 c(Y) = c(5): Y is unbound, so they match and Y gets

 bound to 5
–  As a result of the matching, the structures have been

 instantiated to a(5, b(5, c(5))).

MB: 28 Feb 2001 CS360 Lecture 2 30

Quick Quiz cont’d

 What the difference between a structured data
 object and a relation (remember they both have
 a name and an arity)?

 Given a(X) :- b(5, c), c(b(5, c)). What type of
 term is the first occurrence of b(5, c) ? What
 type of term is the second occurrence of b(5,
 c)?

MB: 28 Feb 2001 CS360 Lecture 2 31

Summary

  Prolog computes answer to query by matching
 query terms against heads of clauses in KB,
 when match occurs computation recurses on
 body of matched clause (with current
 bindings).

  If Prolog succeeds then successful bindings of
 query variables are returned as part of answer.

 Relation arguments are not evaluated.

MB: 28 Feb 2001 CS360 Lecture 2 32

Summary cont’d

 A data object is either a variable or a constant.
 Variables:

–  either bound or unbound.
–  either bound via explicit matching or implicitly via

 subgoal matching.
–  once bound, the value can never be unbound nor

 change.
 Constants can either be:

–  atoms, numbers, or structures.

MB: 28 Feb 2001 CS360 Lecture 2 33

Summary cont’d

  Structures have a functor name and an arity.
 Matching:

–  without unbound variables is trivial.
–  so is unbound variable against non-structure
–  so is unbound variable against structure not

 containing that unbound variable
 Result of matching unbound variable against

 structure containing that variable depends on
 whether that Prolog implemented occurs check.

