
MB: 3 April 2001
 CS360 Lecture 17
 1

Programming in Logic: Prolog

Meta-Interpreters

Readings: 23.2-3

MB: 3 April 2001
 CS360 Lecture 17
 2

Generating Proof Trees

•  In pure Prolog, queries can be viewed as
 theorems to be proved & the KB viewed as a
 collection of axioms.

•  With this perspective, when Prolog attempts to
 show that the current KB satisfies the query, it
 can be viewed as searching for a proof for that
 query.

MB: 3 April 2001
 CS360 Lecture 17
 3

Example: Giving Gifts

•  Axioms (aka Domain Theory):

gives(P1, P2, G) :- likes(P1, P2), wouldPlease(G,P2).

gives(P1,P2,G) :- feelsSorryFor(P1,P2), wouldComfort(G,P2).

 wouldPlease(G,P) :- needs(P,G).

wouldComfort(G,P) :- likes(P,G).

feelsSorryFor(P1,P2) :- likes(P1,P2), sad(P2).

feelsSorryFor(P,P) :- sad(P).

likes(john,annie). likes(annie,john).

likes(john,chocolate).
 needs(annie,tennisRacket).

sad(john).

•  Want to use axioms to prove: gives(john,john,chocolate)

MB: 3 April 2001
 CS360 Lecture 17
 4

gives(john,john,chocolate)

feelsSorryFor(john,john)
 wouldComfort(chocolate,john)

sad(john)
 likes(john,chocolate)

Proof for gives(john,john,chocolate)

MB: 3 April 2001
 CS360 Lecture 17
 5

Prolog Code for Capturing Proof

:- op(500, xfy, <==).

prove(true,true).

prove((Goal1,Goal2), (Proof1, Proof2)) :-

prove(Goal1, Proof1),

prove(Goal2 , Proof2).

prove(Goal, Goal <== Proof) :-

clause(Goal,Body),

prove(Body,Proof).

MB: 3 April 2001
 CS360 Lecture 17
 6

Transforming Proof into Rule

•  From the proof, we see that whenever sad(john) and

 likes(john,chocolate) are facts in the KB then we can
 derive gives(john,john,chocolate)

•  Can transform this into rule:

gives(john,john,chocolate) :-

sad(john), likes(john,chocolate).

•  Could also transform into:

 gives(john,john,chocolate) :-

feelsSorryFor(john,john), likes(john,

 chocolate).

MB: 3 April 2001
 CS360 Lecture 17
 7

Why transform it into rule?

•  While the proof tree is short, it still could have
 taken Prolog a lot of search to find that proof.

•  If we asserted that rule using asserta/1, then the
 next time we had the same situation we would
 find a proof directly.

•  This is another example of rote learning.

•  We can do better than this.

MB: 3 April 2001
 CS360 Lecture 17
 8

Generalizing the Query/Theorem

•  Probably will have other queries about people
 giving themselves things (e.g., Microsoft
 employee buying himself a Porsche) that have the
 same sort of proof, e.g., they’re sad and they
 bought themselves something they like.

•  Generalize query from gives(john,john,chocolate)
 to gives(Person,Person,Thing).

•  Now redo that proof using these variables.

MB: 3 April 2001
 CS360 Lecture 17
 9

Generalized Rule

•  The generalized proof allows us to create a
 more general rule:

gives(Person,

 Person,Thing) :-

sad(Person), likes(Person, Thing).

•  This rule can be used in a lot more situations
 than the original rule.

•  Could generalize rule even more by moving up
 the proof tree to collect condition.

MB: 3 April 2001
 CS360 Lecture 17
 10

Operationality

•  How do we indicate where in the proof tree to
 gather the body of the rule?

•  The idea is that certain goals will be cheap to
 check while others will be expensive.

•  The rule should avoid recomputing expensive
 goals.

•  Goals that are cheap to check are operational.

