
MB: 26 Feb 2001 CS 360 - Lecture 1 1

Introduction
Reading: Read Chapter 1 of Bratko

Programming in Logic: Prolog

MB: 26 Feb 2001 CS 360 - Lecture 1 2

Overview

 Administrivia
 Knowledge-Based Programming
 Running Prolog Programs
  Prolog Knowledge Base Anatomy

MB: 26 Feb 2001 CS 360 - Lecture 1 3

Administrivia:
Contact Info

  Instructor: Mike Barley
 Office: Rm 253 Math/Physics Bldg
  Phone: x6133
 Email: barley@cs.auckland.ac.nz
 Office Hours: Tues 1-3:00

MB: 26 Feb 2001 CS 360 - Lecture 1 4

Administrivia:
Assessment

  2 Homework assignments: 5% each
–  Assignment 1

 Handed out: 5 March
 Due back: 19 March

–  Assignment 2
 Handed out: 19 March
 Due back: 2 April

 Test: 10% - 2 May
 Exam: 30%

MB: 26 Feb 2001 CS 360 - Lecture 1 5

Administrivia:
Which Version of Prolog?

 A copy of SICStus Prolog 3.3 is on cs26.
  Its path is: /usr/local/bin/prolog
 Assignments will be marked using this Prolog.
 Warning: Different versions of Prolog handle

 certain things slightly differently.
 Evaluation copies of SICStus Prolog 3.8 are

 freely available from www.sics.se but they are
 only “good” for a month.

MB: 26 Feb 2001 CS 360 - Lecture 1 6

Administrivia:
Textbook

 Bratko, “Programming for Artificial
 Intelligence”, 3rd edition. Required.

MB: 26 Feb 2001 CS 360 - Lecture 1 7

Administrivia:
Prerequisites

 Understand syntax, semantics, and some basic
 results of first-order predicate calculus (PC).

  For example, DeMorgan’s law applied to
 quantifiers: ~(∃x∀y loves(y,x) ∨ hates(y,x))
–  A) ∃x∀y ~loves(y,x) ∧ ~hates(y,x)
–  B) ∀x∃y ~loves(y,x) ∧ ~hates(y,x)

MB: 26 Feb 2001 CS 360 - Lecture 1 8

 Be able to translate English into PC and vice
 versa, e.g., no one loves everyone.
–  A) ∃x∀y ~loves(x, y)
–  B) ~ ∃x∀y loves(x, y)

 Know the difference between:
–  ∃x∀y loves(x, y)
–  ∀x∃y loves(x, y)

MB: 26 Feb 2001 CS 360 - Lecture 1 9

Administrivia:
Course Goals

 Give a glimpse of the beauty of logic
 programming.

 Give a taste of knowledge-based programming.
 Develop ability to write declarative

 specifications of program in Prolog.
 Develop ability to incrementally optimise a

 Prolog program.

MB: 26 Feb 2001 CS 360 - Lecture 1 10

Administrivia:
Syllabus

  Pure Prolog: Chapters 1-3.3, 4
–  Purely Declarative Features

  Prolog: Chapters 3.4, 5, 6, 7
–  Introducing Control Features

 Advanced Features: Chapters 8.5, 9, 14
–  More of both

MB: 26 Feb 2001 CS 360 - Lecture 1 11

Declarative Programming

 Declarative programming describes what to
 compute rather than how to compute it.

 E.g., blueprints for a house are declarative, they
 describe what to build not how to build it.

 Describing “what” is often much easier than
 describing “how” (but not always).

 Algorithm = Logic + Control (R. Kowalski, 1979)

 Logic expressions are declarative.

MB: 26 Feb 2001 CS 360 - Lecture 1 12

Advantages of Declarative Style
of Programming

  Simply encode your knowledge without
 worrying how the knowledge will be used.

 The underlying inference engine uses that
 knowledge to answer the user’s queries.

 Knowledge can be used in many ways:
–  Is Mary Peter’s sister?
–  Who is Peter’s sister?
–  Who is whose sister?

MB: 26 Feb 2001 CS 360 - Lecture 1 13

Knowledge Bases

 A Knowledge Base has:
–  Knowledge in the form of:

 Facts (e.g., Socrates is a man)
 Rules (e.g., All men are mortals)

–  An inference engine
 A Knowledge Base uses its facts, rules, and

 inference engine to answer questions.
–  Is Socrates mortal?
–  yes

MB: 26 Feb 2001 CS 360 - Lecture 1 14

Logic Programming
& Knowledge Bases

 Logic programming languages are one way to
 implement knowledge bases.

 Encode your knowledge base and your queries
 then the underlying inference engine will
 attempt to answer your queries.

 The inference engine answers your queries by
 building constructive proofs that your queries
 are entailed by the knowledge base.

MB: 26 Feb 2001 CS 360 - Lecture 1 15

Simple Example: Families

 Define the relevant relationships:
–  mother, father, brother, sister, aunt, uncle, cousin,

 ancestor, descendant
  Store the basic facts:

–  parents, siblings, and gender

 Ask your queries:
–  Who is whose sister?

MB: 26 Feb 2001 CS 360 - Lecture 1 16

Some Rules

 motherOf(M,O) :- parentOf(M,O), female(M).
  sisterOf(S,P) :- siblingOf(S,P), female(S).
  auntOf(A,N) :- sisterOf(A,X), parentOf(X,N).
  grandmotherOf(G,P) :-

 motherOf(G,X), parentOf(P).
  ancestor(A,P) :- parentOf(A,P).
  ancestor(A,P) :- parentOf(A,X), ancestor(X,P).
  ...

MB: 26 Feb 2001 CS 360 - Lecture 1 17

Some Facts

 male(john).
  female(mary).
 male(peter).
  parentOf(john, mary).
  siblingOf(mary, peter).
  parentOf(ann, john).
  parentOf(mark, ann).
  ...

MB: 26 Feb 2001 CS 360 - Lecture 1 18

Some Queries

  ?- sisterOf(mary, peter).
  ?- sisterOf(mary, Who).
  ?- sisterOf(Sis, peter).
  ?- sisterOf(Sister, Sibling).
  ?- ancestorOf(A,P).

MB: 26 Feb 2001 CS 360 - Lecture 1 19

Their Answers

  ?- sisterOf(mary, peter).
–  yes

  ?- sisterOf(mary, Who).
–  Who = peter ? ;
–  no

  ?- sisterOf(Sis, peter).
–  Sis = mary ? ;
–  no

MB: 26 Feb 2001 CS 360 - Lecture 1 20

More Answers

  ?- sisterOf(Sister, Sibling).
–  Sibling = peter,
–  Sister = mary ? ;
–  no

MB: 26 Feb 2001 CS 360 - Lecture 1 21

Last Answer

  ?- ancestorOf(A,P).
–  A = john,
–  P = mary ? ;
–  A = ann,
–  P = john ? ;
–  A = mark,
–  P = ann ? ;
–  A = ann,
–  P = mary ? ;
–  ...

MB: 26 Feb 2001 CS 360 - Lecture 1 22

Running Prolog

 Create knowledge base using favorite editor.
 Type /usr/local/bin/prolog on cs26.
 Load that knowledge base into Prolog:

–  [‘myKnowledgeBase.pl’].
 Ask queries:

–  sisterOf(X,Y).
 Exit Prolog:

–  halt.

MB: 26 Feb 2001 CS 360 - Lecture 1 23

Prolog Knowledge Base Anatomy

 Knowledge Base
–  Relations

 Clauses

– Terms

MB: 26 Feb 2001 CS 360 - Lecture 1 24

Terms

 Terms are things like atoms, numbers, variables,
 and structures:
–  tom, 25.3, X, name(mike, barley)

  In happy(P) :- paid(P, X), spend(P,Y), X>Y
 happy(P), :-, paid(P, X),

 spend(P,Y), X>Y, P, X, and Y are all
 terms.

MB: 26 Feb 2001 CS 360 - Lecture 1 25

Anatomy of a Clause

 All clauses terminated by full-stop(“.”).
 Clauses have the form:
  head :- body .

MB: 26 Feb 2001 CS 360 - Lecture 1 26

Head of a Clause

 The head may be the relation name with
 arguments or may be missing, Examples:
–  likes(X,Z) :- likes(X,Y), likes(Y,Z).
–  likes(mike,X) :- true.
–  :- write(***).

  likes(mike,X) :- true. ⇔ likes(mike,X) .
 Clauses with missing bodies are called facts.
  Facts with variables are called universal facts.

MB: 26 Feb 2001 CS 360 - Lecture 1 27

Body of a Clause

 Body is an expression composed of terms.
 When the clause head is missing then the body

 is executed at load-time.

MB: 26 Feb 2001 CS 360 - Lecture 1 28

Anatomy of a Relation

 A relation is identified by its name
 and its arity (# of arguments) - name

/arity
–  likes/2 is a different relation from likes/3

 A relation is defined by the clauses whose heads
 match the relation id, e.g., the clause
–  ancestor(A, P) :- parentOf(A,

 P). is part of the
 definition of ancestor/2

MB: 26 Feb 2001 CS 360 - Lecture 1 29

Anatomy of a Query

 Queries are input by the user (rather than part of
 the knowledge base).

 Queries have clause body syntax & semantics,
 notably variables are existentially quantified.

 When query has variables, &
 Prolog succeeds in proving it follows

 from KB, Prolog displays variable bindings
 used in proof.

MB: 26 Feb 2001 CS 360 - Lecture 1 30

Quick Quiz

 What do you ignore (at least initially) in
 declarative-style programming?

 What are the two main components of a
 knowledge-based system?

 What is the type of knowledge encoded in a
 Prolog knowledge base?

MB: 26 Feb 2001 CS 360 - Lecture 1 31

Quick Quiz cont’d

 By what two things are relations identified?
  In a Prolog knowledge base, what constitutes

 the definition of a relation?
 What forms can a clause take?
 What are the two parts of a clause?
 What terminates a clause?
 Give examples of different types of terms.

MB: 26 Feb 2001 CS 360 - Lecture 1 32

Summary

 Declarative programming focuses on specifying
 what you want, not on how to get it.

 Knowledge based systems provide an
 underlying inference engine, the user provides
 (in declarative form) the knowledge and the
 queries.

  Prolog can be viewed as a type of knowledge
 based programming system.

MB: 26 Feb 2001 CS 360 - Lecture 1 33

Summary cont’d

  Prolog knowledge base = relation collection.
 Relation identified by name/arity.
 Relation defined by clauses whose heads agree

 with that id (i.e., name & number of
 arguments)

MB: 26 Feb 2001 CS 360 - Lecture 1 34

Summary cont’d

 Clauses have following forms:
–  head :- body .
–  head .
–  :- body .

 Queries are entered by the user (i.e., not in
 knowledge base) and have form of clause body.

