Programming 1n Logic: Prolog

Introduction
Reading: Read Chapter 1 of Bratko

MB: 26 Feb 2001 CS 360 - Lecture 1

Overview

Administrivia
Knowledge-Based Programming
Running Prolog Programs

Prolog Knowledge Base Anatomy

MB: 26 Feb 2001 CS 360 - Lecture 1

Administrivia:
Contact Info

Instructor: Mike Barley

Office: Rm 253 Math/Physics Bldg
Phone: x6133

Email: barley(@cs.auckland.ac.nz
Office Hours: Tues 1-3:00

MB: 26 Feb 2001 CS 360 - Lecture 1

Administrivia:
Assessment

2 Homework assignments: 5% each

Assignment 1

Handed out: 5 March
Due back: 19 March

Assignment 2
Handed out: 19 March
Due back: 2 April

Test: 10% - 2 May
Exam: 30%

MB: 26 Feb 2001 CS 360 - Lecture 1

Administrivia:
Which Version of Prolog?

A copy of SICStus Prolog 3.3 1s on ¢s26.
Its path 1s: /usr/local/bin/prolog
Assignments will be marked using this Prolog.

Warning: Different versions of Prolog handle
certain things slightly differently.

Evaluation copies of SICStus Prolog 3.8 are
freely available from www.sics.se but they are
only “good” for a month.

MB: 26 Feb 2001 CS 360 - Lecture 1

Administrivia:
Textbook

Bratko, “Programming for Artificial
Intelligence™, 3rd edition. Required.

MB: 26 Feb 2001 CS 360 - Lecture 1

Administrivia:
Prerequisites

Understand syntax, semantics, and some basic
results of first-order predicate calculus (PC).

For example, DeMorgan’s law applied to
quantifiers: ~(2 Vy loves(y,x) v hates(y,x))

A) IxVy ~loves(y,x) A ~hates(y,x)
B) Vxdy ~loves(y,x) A ~hates(y,x)

MB: 26 Feb 2001 CS 360 - Lecture 1

Be able to translate English into PC and vice
versa, €.g., no one loves everyone.

A) IxVy ~loves(x, y)
B) ~ I Vy loves(x, y)

Know the difference between:
IxVy loves(x, y)

Vx3y loves(x, y)

MB: 26 Feb 2001 CS 360 - Lecture 1

Administrivia:
Course Goals

Give a glimpse of the beauty of logic
programming.
Give a taste of knowledge-based programming.

Develop ability to write declarative
specifications of program 1n Prolog.

Develop ability to incrementally optimise a
Prolog program.

MB: 26 Feb 2001 CS 360 - Lecture 1

Administrivia:
Syllabus
Pure Prolog: Chapters 1-3.3, 4

Purely Declarative Features

Prolog: Chapters 3.4, 5, 6, 7

Introducing Control Features

Advanced Features: Chapters 8.5, 9, 14
More of both

MB: 26 Feb 2001 CS 360 - Lecture 1

10

Declarative Programming

Declarative programming describes what to
compute rather than how to compute it.

E.g., blueprints for a house are declarative, they
describe what to build not how to build it.

Describing “what” 1s often much easier than
describing “how” (but not always).

Algorithm = Logic + Control . xowaski, 1979)

Logic expressions are declarative.

MB: 26 Feb 2001 CS 360 - Lecture 1 11

Advantages of Declarative Style
of Programming

Simply encode your knowledge without
worrying how the knowledge will be used.

The underlying inference engine uses that
knowledge to answer the user’s queries.
Knowledge can be used in many ways:

Is Mary Peter’s sister?

Who 1s Peter’s sister?

Who 1s whose sister?

MB: 26 Feb 2001 CS 360 - Lecture 1 12

Knowledge Bases

A Knowledge Base has:
Knowledge in the form of:

Facts (e.g., Socrates 1s a man)
Rules (e.g., All men are mortals)

An inference engine
A Knowledge Base uses its facts, rules, and
inference engine to answer questions.

Is Socrates mortal?

yes

MB: 26 Feb 2001 CS 360 - Lecture 1

13

Logic Programming
& Knowledge Bases

Logic programming languages are one way to
implement knowledge bases.

Encode your knowledge base and your queries
then the underlying inference engine will
attempt to answer your queries.

The inference engine answers your queries by
building constructive proofs that your queries
are entailed by the knowledge base.

MB: 26 Feb 2001 CS 360 - Lecture 1 14

Simple Example: Families

Define the relevant relationships:

mother, father, brother, sister, aunt, uncle, cousin,
ancestor, descendant

Store the basic facts:

parents, siblings, and gender

Ask your queries:

Who 1s whose sister?

MB: 26 Feb 2001 CS 360 - Lecture 1

15

Some Rules

motherOf(M,0) :- parentOf(M,0O), female(M).
sisterOf(S,P) :- siblingOf(S,P), female(S).
auntOf(A,N) :- sisterOf(4,X), parentOf(X,N).

grandmotherOf(G,P) :-
motherOf(G,X), parentOf(P).

ancestor(A,P) :- parentOf(A,P).

ancestor(A,P) :- parentOf(4,X), ancestor(X P).

MB: 26 Feb 2001 CS 360 - Lecture 1

16

Some Facts

male(john).
female(mary).
male(peter).
parentOf(john, mary).
siblingOf(mary, peter).
parentOf(ann, john).
parentOf(mark, ann).

MB: 26 Feb 2001 CS 360 - Lecture 1

17

Some Queries

?- sisterOf(mary, peter).
?- sisterOf(mary, Who).

?- sisterOf(Sis, peter).

2- sisterOf(Sister, Sibling).
?- ancestorOf(A,P).

MB: 26 Feb 2001 CS 360 - Lecture 1

18

Their Answers

?- sisterOf(mary, peter).

yes

?- sisterOf(mary, Who).
Who = peter ? ;
no

2- sisterOf(Sis, peter).
Sis = mary ? ;

no

MB: 26 Feb 2001 CS 360 - Lecture 1

19

More Answers

?- sisterOf(Sister, Sibling).
Sibling = peter,
Sister = mary ? ,
no

MB: 26 Feb 2001 CS 360 - Lecture 1

20

I ast Answer

?- ancestorOf(A,P).
A = john,
P=mary ?;
A = ann,
P =john ? ;
A = mark,
P=ann?;
A = ann,
P =mary ? ;

MB: 26 Feb 2001 CS 360 - Lecture 1

21

Running Prolog

Create knowledge base using favorite editor.
Type /usr/local/bin/prolog on cs26.
Load that knowledge base into Prolog:
[‘myKnowledgeBase.pl’].
Ask queries:
sisterOf(X,Y).
Exit Prolog:
halt.

MB: 26 Feb 2001 CS 360 - Lecture 1

22

Prolog Knowledge Base Anatomy

Knowledge Base
Relations
Clauses

Terms

MB: 26 Feb 2001 CS 360 - Lecture 1

23

Terms

Terms are things like atoms, numbers, variables,
and structures:

tom, 25.3, X name(mike, barley)
In happy(P) :- paid(P, X), spend(P,Y), X>Y

happy(P), :-, paid(P, X),
spend(P,Y), X>Y, P, X, andY are all
terms.

MB: 26 Feb 2001 CS 360 - Lecture 1

24

Anatomy of a Clause

All clauses terminated by full-stop(*. ”).
Clauses have the form:

head :- body .

MB: 26 Feb 2001 CS 360 - Lecture 1

25

Head of a Clause

The head may be the relation name with
arguments or may be missing, Examples:

likes(X,Z) :- likes(X,Y), likes(Y,Z).

likes(mike, X) :- true.

- write(**%*).
likes(mike, X) :- true. < likes(mike, X) .
Clauses with missing bodies are called facts.

Facts with variables are called universal facts.

MB: 26 Feb 2001 CS 360 - Lecture 1 26

Body of a Clause

Body 1s an expression composed of terms.

When the clause head i1s missing then the body
1S executed at load-time.

MB: 26 Feb 2001 CS 360 - Lecture 1

27

Anatomy of a Relation

A relation 1s 1dentified by its name
and 1ts arity (# of arguments) - name
/arity
likes/2 1s a different relation from likes/3

A relation 1s defined by the clauses whose heads
match the relation 1d, e.g., the clause
ancestor(A, P) :- parentOf(A,
P). 1s part of the
definition of ancestor/2

MB: 26 Feb 2001 CS 360 - Lecture 1 28

Anatomy of a Query

Queries are mput by the user (rather than part of
the knowledge base).

Queries have clause body syntax & semantics,
notably variables are existentially quantified.

When query has variables, &

Prolog succeeds in proving it follows
from KB, Prolog displays variable bindings
used in proof.

MB: 26 Feb 2001 CS 360 - Lecture 1 29

Quick Quiz

What do you 1gnore (at least initially) 1n
declarative-style programming?

What are the two main components of a
knowledge-based system?

What is the type of knowledge encoded 1n a
Prolog knowledge base?

MB: 26 Feb 2001 CS 360 - Lecture 1

30

Quick Quiz cont’d

By what two things are relations 1dentified?

In

a Prolog knowledge base, what constitutes

the definition of a relation?

\\
Wi
W4

hat forms can a clause take?

nat are the two parts of a clause?

hat terminates a clause?

Give examples of different types of terms.

MB: 26 Feb 2001

CS 360 - Lecture 1 31

Summary

Declarative programming focuses on specifying
what you want, not on how to get it.

Knowledge based systems provide an
underlying inference engine, the user provides
(in declarative form) the knowledge and the
queries.

Prolog can be viewed as a type of knowledge
based programming system.

MB: 26 Feb 2001 CS 360 - Lecture 1 32

Summary cont’d

Prolog knowledge base = relation collection.
Relation 1dentified by name/arity.

Relation defined by clauses whose heads agree
with that 1d (1.e., name & number of
arguments)

MB: 26 Feb 2001 CS 360 - Lecture 1 33

Summary cont’d

Clauses have following forms:

head :- body .

head .

:- body .
Queries are entered by the user (1.€., not in
knowledge base) and have form of clause body.

MB: 26 Feb 2001 CS 360 - Lecture 1

34

