
MB: 26 Feb 2001 CS 360 - Lecture 1 1 

Introduction 
Reading: Read Chapter 1 of Bratko 

Programming in Logic: Prolog 



MB: 26 Feb 2001 CS 360 - Lecture 1 2 

Overview 

 Administrivia 
 Knowledge-Based Programming 
 Running Prolog Programs 
  Prolog Knowledge Base Anatomy 



MB: 26 Feb 2001 CS 360 - Lecture 1 3 

Administrivia: 
Contact Info 

  Instructor: Mike Barley 
 Office: Rm 253 Math/Physics Bldg 
  Phone: x6133 
 Email: barley@cs.auckland.ac.nz 
 Office Hours: Tues 1-3:00 



MB: 26 Feb 2001 CS 360 - Lecture 1 4 

Administrivia: 
Assessment 

  2 Homework assignments: 5% each 
–  Assignment 1 

 Handed out: 5 March 
 Due back: 19 March 

–  Assignment 2 
 Handed out: 19 March 
 Due back: 2 April 

 Test: 10% - 2 May 
 Exam: 30% 



MB: 26 Feb 2001 CS 360 - Lecture 1 5 

Administrivia:  
Which Version of Prolog? 

 A copy of SICStus Prolog 3.3 is on cs26. 
  Its path is: /usr/local/bin/prolog 
 Assignments will be marked using this Prolog. 
 Warning: Different versions of Prolog handle

 certain things slightly differently. 
 Evaluation copies of SICStus Prolog 3.8 are

 freely available from www.sics.se but they are
 only “good” for a month. 



MB: 26 Feb 2001 CS 360 - Lecture 1 6 

Administrivia: 
Textbook 

 Bratko, “Programming for Artificial
 Intelligence”, 3rd edition.  Required.   



MB: 26 Feb 2001 CS 360 - Lecture 1 7 

Administrivia: 
Prerequisites 

 Understand syntax, semantics, and some basic
 results of first-order predicate calculus (PC). 

  For example, DeMorgan’s law applied to
 quantifiers:  ~(∃x∀y loves(y,x) ∨ hates(y,x))  
–  A) ∃x∀y ~loves(y,x) ∧ ~hates(y,x)  
–  B) ∀x∃y ~loves(y,x) ∧ ~hates(y,x) 



MB: 26 Feb 2001 CS 360 - Lecture 1 8 

 Be able to translate English into PC and vice
 versa, e.g., no one loves everyone. 
–  A) ∃x∀y ~loves(x, y) 
–  B) ~ ∃x∀y loves(x, y) 

 Know the difference between: 
–  ∃x∀y loves(x, y) 
–  ∀x∃y loves(x, y) 



MB: 26 Feb 2001 CS 360 - Lecture 1 9 

Administrivia: 
Course Goals 

 Give a glimpse of the beauty of logic
 programming. 

 Give a taste of knowledge-based programming. 
 Develop ability to write declarative

 specifications of program in Prolog. 
 Develop ability to incrementally optimise a

 Prolog program.  



MB: 26 Feb 2001 CS 360 - Lecture 1 10 

Administrivia: 
Syllabus 

  Pure Prolog: Chapters 1-3.3, 4 
–  Purely Declarative Features 

  Prolog: Chapters 3.4, 5, 6, 7 
–  Introducing Control Features 

 Advanced Features: Chapters 8.5, 9, 14 
–  More of both 



MB: 26 Feb 2001 CS 360 - Lecture 1 11 

Declarative Programming 

 Declarative programming describes what to
 compute rather than how to compute it. 

 E.g., blueprints for a house are declarative, they
 describe what to build not how to build it. 

 Describing “what” is often much easier than
 describing “how” (but not always). 

 Algorithm = Logic + Control (R. Kowalski, 1979) 

 Logic expressions are declarative. 



MB: 26 Feb 2001 CS 360 - Lecture 1 12 

Advantages of Declarative Style  
of Programming 

  Simply encode your knowledge without
 worrying how the knowledge will be used. 

 The underlying inference engine uses that
 knowledge to answer the user’s queries. 

 Knowledge can be used in many ways: 
–  Is Mary Peter’s sister? 
–  Who is Peter’s sister? 
–  Who is whose sister? 



MB: 26 Feb 2001 CS 360 - Lecture 1 13 

Knowledge Bases 

 A Knowledge Base has: 
–  Knowledge in the form of: 

 Facts (e.g., Socrates is a man) 
 Rules (e.g., All men are mortals)  

–  An inference engine 
 A Knowledge Base uses its facts, rules, and

 inference engine to answer questions. 
–  Is Socrates mortal? 
–  yes 



MB: 26 Feb 2001 CS 360 - Lecture 1 14 

Logic Programming  
& Knowledge Bases 

 Logic programming languages are one way to
 implement knowledge bases. 

 Encode your knowledge base and your queries
 then the underlying inference engine will
 attempt to answer your queries. 

 The inference engine answers your queries by
 building constructive proofs that your queries
 are entailed by the knowledge base. 



MB: 26 Feb 2001 CS 360 - Lecture 1 15 

Simple Example: Families 

 Define the relevant relationships: 
–  mother, father, brother, sister, aunt, uncle, cousin,

 ancestor, descendant 
  Store the basic facts: 

–  parents, siblings, and gender 

 Ask your queries: 
–  Who is whose sister? 



MB: 26 Feb 2001 CS 360 - Lecture 1 16 

Some Rules 

 motherOf(M,O) :- parentOf(M,O), female(M). 
  sisterOf(S,P) :- siblingOf(S,P), female(S). 
  auntOf(A,N) :- sisterOf(A,X), parentOf(X,N). 
  grandmotherOf(G,P) :-                       

  motherOf(G,X), parentOf(P). 
  ancestor(A,P) :- parentOf(A,P). 
  ancestor(A,P) :- parentOf(A,X), ancestor(X,P). 
  ... 



MB: 26 Feb 2001 CS 360 - Lecture 1 17 

Some Facts 

 male(john). 
  female(mary). 
 male(peter). 
  parentOf(john, mary). 
  siblingOf(mary, peter). 
  parentOf(ann, john). 
  parentOf(mark, ann). 
  ... 



MB: 26 Feb 2001 CS 360 - Lecture 1 18 

Some Queries 

  ?- sisterOf(mary, peter). 
  ?- sisterOf(mary, Who). 
  ?- sisterOf(Sis, peter). 
  ?- sisterOf(Sister, Sibling). 
  ?- ancestorOf(A,P). 



MB: 26 Feb 2001 CS 360 - Lecture 1 19 

Their Answers 

  ?- sisterOf(mary, peter). 
–  yes 

  ?- sisterOf(mary, Who). 
–  Who = peter ? ; 
–  no 

  ?- sisterOf(Sis, peter). 
–  Sis = mary ? ; 
–  no 



MB: 26 Feb 2001 CS 360 - Lecture 1 20 

More Answers 

  ?- sisterOf(Sister, Sibling). 
–  Sibling = peter, 
–  Sister = mary ? ; 
–  no 



MB: 26 Feb 2001 CS 360 - Lecture 1 21 

Last Answer 

  ?- ancestorOf(A,P). 
–  A = john, 
–  P = mary ? ; 
–  A = ann, 
–  P = john ? ; 
–  A = mark,  
–  P = ann ? ; 
–  A = ann, 
–  P = mary ? ; 
–  ... 



MB: 26 Feb 2001 CS 360 - Lecture 1 22 

Running Prolog 

 Create knowledge base using favorite editor. 
 Type /usr/local/bin/prolog on cs26. 
 Load that knowledge base into Prolog: 

–  [‘myKnowledgeBase.pl’]. 
 Ask queries: 

–  sisterOf(X,Y). 
 Exit Prolog: 

–  halt. 



MB: 26 Feb 2001 CS 360 - Lecture 1 23 

Prolog Knowledge Base Anatomy 

 Knowledge Base 
–  Relations 

 Clauses 

– Terms 



MB: 26 Feb 2001 CS 360 - Lecture 1 24 

Terms 

 Terms are things like atoms, numbers, variables,
 and structures: 
–  tom,    25.3,    X,   name(mike, barley) 

  In happy(P) :- paid(P, X), spend(P,Y), X>Y   
 happy(P),    :-,    paid(P, X),   

  spend(P,Y),     X>Y,   P,    X,   and Y  are all
 terms. 



MB: 26 Feb 2001 CS 360 - Lecture 1 25 

Anatomy of a Clause 

 All clauses terminated by full-stop(“.”). 
 Clauses have the form: 
  head :- body . 



MB: 26 Feb 2001 CS 360 - Lecture 1 26 

Head of a Clause 

 The head may be the relation name with
 arguments or may be missing, Examples: 
–  likes(X,Z) :- likes(X,Y), likes(Y,Z). 
–  likes(mike,X) :- true. 
–  :- write(***).  

  likes(mike,X) :- true. ⇔ likes(mike,X) . 
 Clauses with missing bodies are called facts. 
  Facts with variables are called universal facts. 



MB: 26 Feb 2001 CS 360 - Lecture 1 27 

Body of a Clause 

 Body is an expression composed of terms. 
 When the clause head is missing then the body

 is executed at load-time. 



MB: 26 Feb 2001 CS 360 - Lecture 1 28 

Anatomy of a Relation 

 A relation is identified by its name  
  and its arity (# of arguments)  - name

/arity 
–  likes/2 is a different relation from likes/3 

 A relation is defined by the clauses whose heads 
 match the relation id, e.g., the clause 
–  ancestor(A, P) :- parentOf(A,

 P).      is part of the
 definition of ancestor/2 



MB: 26 Feb 2001 CS 360 - Lecture 1 29 

Anatomy of a Query 

 Queries are input by the user (rather than part of
 the knowledge base). 

 Queries have clause body syntax & semantics,
 notably variables are existentially quantified. 

 When query has variables, &  
  Prolog succeeds in proving it follows

 from KB, Prolog displays variable bindings
 used in proof. 



MB: 26 Feb 2001 CS 360 - Lecture 1 30 

Quick Quiz 

 What do you ignore (at least initially) in
 declarative-style programming? 

 What are the two main components of a
 knowledge-based system? 

 What is the type of knowledge encoded in a
 Prolog knowledge base? 



MB: 26 Feb 2001 CS 360 - Lecture 1 31 

Quick Quiz cont’d 

 By what two things are relations identified? 
  In a Prolog knowledge base, what constitutes

 the definition of a relation? 
 What forms can a clause take? 
 What are the two parts of a clause? 
 What terminates a clause? 
 Give examples of different types of terms. 



MB: 26 Feb 2001 CS 360 - Lecture 1 32 

Summary 

 Declarative programming focuses on specifying
 what you want, not on how to get it. 

 Knowledge based systems provide an
 underlying inference engine, the user provides
 (in declarative form) the knowledge and the
 queries. 

  Prolog can be viewed as a type of knowledge
 based programming system. 



MB: 26 Feb 2001 CS 360 - Lecture 1 33 

Summary cont’d 

  Prolog knowledge base = relation collection. 
 Relation identified by name/arity. 
 Relation defined by clauses whose heads agree

 with that id (i.e., name & number of
 arguments) 



MB: 26 Feb 2001 CS 360 - Lecture 1 34 

Summary cont’d 

 Clauses have following forms:  
–  head :- body .   
–  head . 
–  :- body . 

 Queries are entered by the user (i.e., not in
 knowledge base) and have form of clause body. 


