Prolog

CS367 ARTIFICIAL INTELLIGENCE
Chapter 9
Patricia J Riddle

Outline

Logic programming and declarative programs

Introduction to Prolog

Basic operation of the Prolog interpreter

Imperative Programming

Formulate a “how to compute it” recipe, e.g.:

to compute the sum of the list, iterate through the list adding each value
to an accumulator variable

int sum(int[] list) {
int result =0;
for(int i=0; i<list.length; ++i) {
result += list[i];

}

return result;

}

OO Programing is a type of imperative programming
(you have to say “how to compute it”)

Functional Programming

Again formulate a “how to compute it” recipe
Probably will need to do recursive decomposition

(* The sum of the empty list is zero and the sum
of the list with head h and tail t is h plus the
sum of the tail. *)

fun sum([])=0
| sum(h::t) = h + sum(t);

Logic Programming

% the sum of the empty list is zero
sum([],0).

% the sum of the list with head H and
% tail Tis N if the sum of the list T
%isMandNisM+H

sum([H|T],N) :- sum(T,M), N is M+H.

This is a declarative reading of a program

Not “how to compute” the result
Instead “this is true about the result”

Prolog Programs Answer Questions

The Prolog “database”

Facts + Rules

V /4 \\\

Questions Answers

Facts

 Same predicate can take different arguments to produce
distinct facts.

parent(abe, bob).
male(abe).
parent(ann, bob).
female(ann).

female(X). (probably don’t want to do this!!!)

o »”»

Variables are capitalized (or start with an asin_x)and
constants and predicates must begin with a small letter!!!

Rules

* a head (a single nonnegated predicate with
arguments)

* a body (a set of predicates and associated
arguments)

Head :- Body1l, Body?2

Bodyl A Body2 = Head

Rules

father(abe, bob) :- parent(abe, bob), male(abe).
mother(ann, bob) :- parent(ann, bob), female(ann).

father(X, Y) :- parent(X, Y), male(X).
mother(X, Y) :- parent(X, Y), female(X).

V x,y parent(x, y) A male(x) = father(x,y)
V' x,y parent(x, y) A female(x) = mother(x,y)

* Prolog treats most variables in rules as universally
quantified.

Existentially Quantified

brother(X, Z) :- parent(Y, X), parent(Y, Z),
male(X).

V x,z dy parent(y, x) A parent(y,z) A male(x) = brother(x,z)

* Prolog treats unbound variables in a rule’s
body as existentially quantified.

Recursive Rules

* The language also lets one define predicates
recursively:

ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).
ancestor(X, Y) :- parent(X, Y).

* These rules specify ancestor in terms of
parent and ancestor.

Queries

 Auserruns a Prolog program by providing a query stated as one or more
predicates with (partially) specified arguments.

 E.g., here are some queries using primitive kinship predicates:

?- parent(abe, bob). ... true.
?- parent(bob, abe). ... false.
?- parent(P, bob). ... P = abe.

The language also supports conjunctive queries:
?- parent(A, B), male(A), male(B). ... A=abe, B =bob;
A = bob, B =dan.

* Prolog answers these queries by examining sets of facts and checking for
consistent argument bindings.

More Queries

* Prolog queries can also refer to higher-level, defined predicates.
 E.g., here are some queries using defined kinship predicates:

?- father(abe, dan). ... false.
?- brother(B, ema). ... B=Dbob.
?- uncle(ann, N). ... false.
?- grandfather(GF, GC). ... GF = abe, GC = dan.
?- ancestor(A, dan). ... A = cat;
... A =bob;
... A=ann;
... A = abe.

 These queries require more than simple lookup to answer; they
depend upon multi-step reasoning.

How to enter a KB

2 ?- [user].

male(tom).

Warning: user://1:13:

Redefined static procedure male/1

Previously defined at /Users/prid013/Desktop/prolog:7
| : female(sally).

Warning: user://1:17:

Redefined static procedure female/1

Previously defined at /Users/prid013/Desktop/prolog:11
| :

% user://1 compiled 0.01 sec, -2 clauses

true.

37?-

e (ctrl-d to get out of user mode)

Our Knowledge Base — part 1

parent(abe, bob).
parent(ann, bob).
parent(bob, dan).
parent(cat, dan).

parent(ann, ema).

parent(mork, "ET").

male(abe).
male(bob).
male(dan).

female(ann).
female(cat).

Our Knowledge Base — part 2

father(X, Y) :- parent(X, Y), male(X).

mother(X, Y) :- parent(X, Y), female(X).

son(X, Y) :- parent(Y, X), male(X).

brother(X, Z) :- parent(Y, X), parent(Y, Z), male(X).
uncle(X, Z) :- brother(X, Y), parent(Y, Z), male(X).

grandfather(X, Z) :- father(X, Y), father(Y, 2).
grandfather(X, Z) :- father(X, Y), mother(Y, Z).

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).

How to load a knowledge base

1 ?- ['~/Desktop/prolog'].
% /Users/prid013/Desktop/prolog compiled 0.00 sec, 18 clauses

How to find out what is in your KB?

?- listing.

Complex Patterns with Negations

2 ?- parent(X, Y), not(male(X)).
X =ann,

Y = bob

X = cat,

Y =dan

X =ann,

Y =ema

X = mork,

Y ="ET.

3 ?- not(male(X)),parent(X,Y).
false.

e |tisimportant to always have “not” after the variables are bound!!

List Structures in Prolog

single_list([a, b, c, d]).
three sets([a, b, c], [d], []).
more_sets([[a, b], [[c], d]]).

Prolog (this slide will appear again)

Appending two lists to produce a third:

=

yY) .
]/Y/ [XIZ]) . append(L,Y,Z).
query: append(A,B, [1,2]) 7

answers: A=1] B=[1, 2]

Reversing a List

reverse ([], X, X).
reverse ([X | Y], Z, W) :- reverse (Y, [X | Z], W).

append([1],[2],X).

append([1],X,[1,2]).

append(Z,Y,[1,2]).
append([1],X,Y).

append(X,Y,Z).

reverse(X,[],[1,2,3]).

reverse(X,Z,[1,2,3]).
reverse(X,[1,2,3],2).
reverse([1,2,3],X,2).

reverse(X,Y,Z).

Fun with Lists

Ordering Matters

reverse ([X | Y], Z, W) :- reverse (Y, [X | Z], W).
reverse ([], X, X).

e |s different than

reverse ([], X, X).
reverse ([X | Y], Z, W) :- reverse (Y, [X | Z], W).

Summary Remarks

Prolog is a declarative language.

You do not have to specify “How” things
happen

“not” can be a problem
You can put variables anywhere
Ordering matters

