CS 367 Tutorial

29 September 2008

Week 9 (tutorial #7)

Carl Schultz

Material is taken from lecture notes (http://www.cs.auckland.ac.nz/compsci367s2c/lectures/index.html)

and one of the course text books:

[1] “Stuart J. Russell and Peter Norvig. Artificial Intelligence : A Modern Approach. Prentice Hall, Upper Saddle River, New Jersey, 1995.”
Hopfield nets
The following material is taken directly from:
[2] Kevin Gurney, “Associative Memories – the Hopfield Net” available at:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.8237
content-addressable memory
· a function or map 
· can learn some patterns (e.g. image of letter “J”) and given a partial pattern (slightly scrambled image of “J”) will reproduce the nearest learnt pattern
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(adapted from [2])

· Hopfield network has units that are either active or passive

· weighted, symmetric connections between units
· a pattern can be described as some particular combination of active units in a state (each unit has a unique name or identifier)
· learning a pattern = adjusting the weights

· recalling a pattern = parallel relaxation algorithm
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· parallel relaxation algorithm:  boulder-valley analogy (adapted from [2])
· we have a boulder rolling down a valley
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· the bottom of the valley represents the pattern that the Hopfield net has learnt
· wherever the boulder is initially placed, it will roll towards the nearest local minimum – this represents the Hopfield net iteratively processing the next network state
· the boulder will eventually stop rolling at the bottom of the valley – this represents the stable state of the Hopfield network 
· our landscape can have multiple valleys – this represents the Hopfield network learning multiple patterns; note “crafting the landscape” represents “learning”
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· depending on where the boulder is initially placed it will roll towards the nearest valley – given some partial pattern, the Hopfield network (using the parallel relaxation algorithm) will eventually stabilise at the closest matching pattern 
[image: image5.png]Parallel Relaxation in Hopfield Networks

A random unit is chosen.

If any of its neighbors are active, the unit computes
the sum of the weights on the connections to those
active neighbors.

If the sum is positive, the unit becomes active;
otherwise it becomes inactive.

The process (parallel relaxation) is repeated until the
network reaches a stable state.
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Perceptrons

Review slides “Perceptron” and “A Perceptron”
· note: perceptron “learning” means adjusting the weights w0…wn
· we saw how this was done using stochastic gradient descent in previous tutorials
· activation function

· each unit (neuron) has n incoming connections (x1…xn) each with weights (w1…wn)
· by default input x0 =1 meaning that w0 always applies – this acts as the threshold as follows:
· implicit threshold: the sum of all inputs must be greater then or equal to 0

· e.g. for 2 inputs: w0 + w1x1 + w2x2 ≥ 0
· explicit threshold: the sum of all inputs must be greater than or equal to value t (threshold)
· note that we sum from i=1 to n (rather than from i=0)
· So what about w0?   If  t= (w0 then it’s the same as summing from i=0

w1x1 + w2x2   ≥  t
(here’s the explicit threshold)
    (t + 
w1x1 + w2x2  ≥  0
   w0 + 
w1x1 + w2x2  ≥  0
(we’re back to an implicit threshold)
· perceptron can only represent linearly separable functions
· e.g. for two inputs (two dimensional system) it can separate the black and white dots because it can draw a line through the graph that divides them
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· line equation:
y = mx + b
· perceptron activation function as a line equation:
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· note that this applies to any number of dimensions (any i≥1 used as xi )
· e.g. 1-dimensional system might look like:
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· …where the perceptron needs to find a good point (-w0 / w1) that splits the white and black dots

· e.g. 3-dimensional system might look like:
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· …where the perceptron needs to find a good plane
· perceptrons can’t learn functions that are not linearly separable

· e.g. XOR:

· Let x1 and x2 only take values of either 0 or 1

· if x1=x2 then dot is white (represents Boolean false) 

· if x1≠x2 then dot is black (represents Boolean true)
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· …you can’t draw a straight line through this graph that separates the white dots from the black dots

· e.g. same problem in 1D as well:
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· …you can’t choose a single point that will separate the black and white dots

· solution: multilayer networks 
· e.g. multilayer network with one hidden layer:
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· Why does this solve the problem? (following is from [1])
· hidden layers increase the hypothesis space that our neural network can represent

· think of each hidden unit as a perceptron that draws a line through our 2D graph (to classify dots as black or white)
· so now our output unit can take the combination of these lines

· e.g. consider XOR function again

· Let x1 and x2 only take values of either 0 or 1

· units a1 and a2 represent inputs x1 and x2 respectively

	perceptron a3
     a1 + a2 ≥ 0.5
	
	perceptron a4
     a1 + a2 ≥ 1.5
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· the perceptron will give a “1” (on) if the input (dot) lies on the side of the line that has a big red “1”
· now we’ll combine a3 and a4 to capture the XOR function

· we want: a3=1 ( a4=0 to give a “1” in our network
· note that no dot can satisfy a3=0 ( a4=1 (compare the graphs above)

· the complete network is on the right

	perceptron a5
     a3 ( a4 ≥ 0.5
	Complete multilayer feed-forward neural net
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· note that there are lots of ways (infinite) to implement XOR in a neural network
· the error values at the “hidden” layer are sort of mysterious because the training data only gives values for the input and the desired output (doesn’t specify what values the hidden layers should take)
· “learning” in multilayer feed-forward neural nets uses the back-propagation algorithm
· the error from the output layer is propagated back through to the hidden layers (assess blame by dividing the error up among the contributing weights)
· strongly recommend reading the text book [1] chapter 20.5 “Neural Networks”
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