CS 367 Tutorial

25 August 2008
Week 6 (tutorial \#4)
Carl Schultz

Material is taken from lecture notes (http://www.cs.auckland.ac.nz/compsci367s2c/lectures/index.html).

[exercise]

Attributes and values for some animals are
Tail (yes, no)
Size (small, medium, large)
Skin (smooth, furry, slimy)
Legs (none, two, four)
a) how many distinct animals are there?
b) how many syntactically distinct hypotheses are there?
c) how many semantically distinct hypotheses are there?
a) $2 * 3 * 3 * 3=54$
b) $4 * 5 * 5 * 5=500$
c) $1+3 * 4 * 4 * 4=193$

[exercise]

Arrange the following hypotheses in order from most general to least general
$\mathrm{h}_{\mathrm{a}}=<$ sunny, warm, ?, strong, cool, same>
$\mathrm{h}_{\mathrm{b}}=<$ sunny, ?, ?, strong, ?, ?>
$\mathrm{h}_{\mathrm{c}}=<$ sunny, warm, ?, strong, ?, same>
$\mathrm{h}_{\mathrm{d}}=<$ sunny, ?, ?, ?, ?, ?>
$h_{\mathrm{e}}=<$ sunny, warm, high, strong, cool, same>
$\mathrm{h}_{\mathrm{f}}=$ <sunny, warm, ?, strong, ?, ?>
$\mathrm{h}_{\mathrm{g}}=<$?, ?, ?, ?, ?, ?>
g,d,b,f,c,a,e

[exercise]

Draw a graph of generality (partial order) for the following hypotheses. Hint: start with the most general and the most specific then fill in the gaps.
$\mathrm{h}_{\mathrm{a}}=<$ sunny, warm, ?, ?, ?, ?>
$\mathrm{h}_{\mathrm{b}}=<$?, warm, ?, ?, ?, ? $>$
$\mathrm{h}_{\mathrm{c}}=<$ sunny, ?, ?, ?, ?, ?>
$\mathrm{h}_{\mathrm{d}}=<$?, warm, ?, strong, ?, ?>
$\mathrm{h}_{\mathrm{e}}=<$ rainy, warm, ?, strong, ?, ?>
$\mathrm{h}_{\mathrm{f}}=<$ sunny, ?, ?, strong, ?, ?>
$\mathrm{h}_{\mathrm{g}}=<$ sunny, warm, ?, strong, ?, ?>

[exercise]

Attributes and values for some animals are
Tail (yes, no)
Size (small, large)
Skin (furry, slimy)
Legs (two, four)
Perform the "Find-S" algorithm to determine the maximally specific hypothesis for the following training data

1. <yes, small, slimy, four>, +
2. <no, small, slimy, four>, -
3. <yes, large, slimy, four>, +
4. <yes, small, furry, four>, +
$\mathrm{h}_{0}=<0,0,0,0>$
$\mathrm{h}_{1}=<$ yes, small, slimy, four >
$\mathrm{h}_{2}=<$ yes, small, slimy, four >
$\mathrm{h}_{3}=<$ yes, ?, slimy, four >
$h_{4}=<y e s$, ?, ?, four>
