CS 367 Tutorial 25 August 2008 Week 6 (tutorial #4) Carl Schultz

Material is taken from lecture notes (http://www.cs.auckland.ac.nz/compsci367s2c/lectures/index.html).

NB: recommended text for this part of the course is "Tom M. Mitchell, Machine Learning McGraw-Hill, New York, 1997"

- concept=some 'interesting' subset of objects or events
- e.g. "Days Aldo enjoys water sport"

- o "day" can have "warm temp" or "cold temp"
- ο ...

attributes	Sky	Temp	Humid	Wind	Water	Forecast		
attribute	sunny	warm	normal	strong	warm	same		distinct "day"
	sunny	warm	high	strong	warm	same		
value /	rainy	cold	high	strong	warm	change	\succ	events
	sunny	warm	high	strong	cool	change		

- can describe a "day" as attribute values, e.g.
 - o <sunny,warm,normal,strong,warm,same>_ distinct "day"
- so, alternative definition of concept:
 - \circ concept = Boolean-valued function
 - o function input =attribute values (Sky=sunny,...)
 - o function output =Boolean TRUE, FALSE

Sky sunny sunny	Temp warm warm	Humid normal high	Wind strong strong	Water warm warm	Forecast same same	Enjoy yes yes	"day" is in concept TRUE / FALSE
rainy	cold	high	strong	warm	change	no	
sunny	warm	high	strong	cool	chang	yes 🖌]

attribute-value input

Boolean output

- task: learn Boolean-function from training examples
 - given certain input (Sky=sunny,...) our function will correctly return TRUE (matches concept) or FALSE (not a match)
 - o real concept function is called "c"
 - o we learn an approximation called "h" (hypothesis)
 - ? = any value acceptable
 - 0 = no value acceptable
 - \circ E.g. h(x) = Sky=sunny AND Temp=warm AND Humidity=? ...

The Inductive Hypothesis

• Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over unobserved examples.

- <u>search problem</u>: find best hypothesis out of all possible hypotheses
- e.g. attributes for "days" are
 - Sky (values Sunny, Cloudy, or Rainy)
 - Temp (values Warm or Cold)
 - Humidity (Normal or High)
 - Wind (Strong or Weak)
 - Water (Warm or Cool)
 - Forecast (Same or Change)
- each distinct "day" is a conjunction of attribute values
 - o e.g. one distinct "day" has
 - Sky=sunny AND
 - Temp=warm AND
 - Humidity=normal AND
 - Wind=strong AND
 - Water=warm AND
 - Forecast=same
- How many distinct "days" are there?
 - Sky can take 1 of 3 values (sunny, cloudy, rainy)
 - Temp can take 1 of 2 values (warm, cold)
 - ...

1	Sunny	Warm	Normal	Strong	Warm	Same
2	Cloudy	Warm	Normal	Strong	Warm	Same
3	Rainy	Warm	Normal	Strong	Warm	Same
4	Sunny	Cold	Normal	Strong	Warm	Same

- Number of combinations: $3 \times 2 \times 2 \times 2 \times 2 = 96$ distinct "days"
- How many distinct hypotheses are there? E.g. one distinct hypothesis is
 - h(x) = Sky=sunny AND Temp=warm AND Humidity=? AND Wind=strong AND Water=warm AND Forecast=same
 - o for each attribute, hypothesis can put either
 - a particular attribute value
 - ?
 - 0

- number of combinations: $5 \times 4 \times 4 \times 4 \times 4 = 5120$ syntactically distinct hypotheses
- o some hypotheses are really saying the same thing, e.g.

$h_1(x) = Sky=0$ AND	$h_2(x) =$ Sky=sunny AND
Temp=warm AND	Temp=warm AND
Humidity=? AND	Humidity=? AND
Wind=strong AND	Wind=strong AND
Water=warm AND	Water=0 AND
Forecast=same	Forecast=same

- o neither of these hypotheses accept any "day", so semantically the same
- o number of combinations:
 - 1 (hypothesis with one or more 0) +
 - $4 \times 3 \times 3 \times 3 \times 3 \times 3$ (add ? to each attribute)
 - = 973 **semantically** distinct hypotheses

[exercise]

Attributes and values for some animals are

Tail (yes, no) Size (small, medium, large) Skin (smooth, furry, slimy) Legs (none, two, four)

a) how many distinct animals are there?

- b) how many syntactically distinct hypotheses are there?
- c) how many semantically distinct hypotheses are there?
- general vs. specific hypotheses

h₁=<sunny,?,?,strong,?,?>

h₂=<sunny,?,?,?,?,?>

- h_2 is **more general** than h_1 because
 - whenever h₁ is TRUE, h₂ is also TRUE
 - and sometimes when h₂ is TRUE, h₁ is *not* TRUE
 - e.g. <**sunny**, warm, normal, **weak**, warm, same>
 - h₂ says TRUE but h₁ says FALSE
- the most general hypothesis is <?,?,?,?,?> ...this is *always* TRUE
- the most specific hypothesis is <0,0,0,0,0,0>...this is *always* FALSE

[exercise] Arrange the following hypotheses in order of generality $h_a = < sunny, warm, ?, strong, cool, same >$ $h_b = < sunny, ?, ?, strong, ?, ?>$ $h_c = < sunny, warm, ?, strong, ?, same >$ $h_d = < sunny, ?, ?, ?, ?, ?>$ $h_e = < sunny, warm, high, strong, cool, same >$ $h_f = < sunny, warm, ?, strong, ?, ?>$ $h_g = <?, ?, ?, ?, ?, ?>$

- hypotheses only in a **partial** ordering
 - o is $h_x = \langle sunny, ?, ?, ?, ?, ? \rangle$ more general than $h_y = \langle rainy, warm, ?, ?, ?, ? \rangle$...?
 - \circ no, because <rainy, warm, ...> is TRUE for h_v and FALSE for h_x
 - $h_z = \langle ?, ?, ?, ?, ?, ? \rangle$ is still **more general** than both h_x and h_y

[exercise]

Draw a graph of generality (partial order) for the following hypotheses. *Hint*: start with the most general and the most specific then fill in the gaps.

- learning finding the maximally specific hypothesis: "Find-S" algorithm
- 1. Initialize h to the most specific hypothesis in H
- 2. For each positive training instance x
 - For each attribute constraint a_i in hIf the constraint a_i is satisfied by xThen do nothing
 - Else replace a_i in h by the next more general constraint that is satisfied by x
- 3. Output hypothesis h

- 2. <no, small, slimy, four>, -
- 3. <yes, large, slimy, four>, +
- 4. <yes, small, furry, four>, +
- more than one hypothesis can match the training data
- version space: subset of hypotheses that are consistent with training examples
 - **general boundary**: set of hypotheses consistent with training examples that are *maximally* general
 - **specific boundary**: set of hypotheses consistent with training examples that are *minimally* general

The following image is from Wikipedia at http://en.wikipedia.org/wiki/Version_space

- "Candidate Elimination" algorithm
 - o positive examples → relax (generalise) specific boundary to accommodate
 prune (remove) inconsistent hypotheses in general boundary
 - **negative** examples \rightarrow tighten (specialise) **general** boundary to eliminate
 - prune (remove) inconsistent hypotheses in specific boundary

• good example:

0

http://www2.cs.uregina.ca/~hamilton/courses/831/notes/ml/vspace/3_vspace.html