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Week 5 (tutorial #3) 
Carl Schultz 
 
Material is taken from lecture notes (http://www.cs.auckland.ac.nz/compsci367s2c/lectures/index.html) 
and one of the course text books “Stuart J. Russell and Peter Norvig. Artificial Intelligence : A Modern 
Approach. Prentice Hall, Upper Saddle River, New Jersey, 1995.” 
 
NB: recommended text for this part of the course is “Tom M. Mitchell, Machine 
Learning McGraw-Hill, New York, 1997” 
 

• what does learning mean? 
1) computer program takes some input, produces some output (i.e. it’s a 

mathematical function) 
2) evaluates quality of its output 
3) based on evaluation, changes itself so that, in future, the quality of the 

output will hopefully be improved (changes mapping between input and 
output) 

 
 
• Formally, 

o T: class of tasks that we want computer program to do 
o P: measure of performance for how well computer did 
o E: some experience program has with task 

 
 
• e.g. Handwriting Recognition: 

o T: recognising and classifying handwritten words with images 
o P: percent of words correctly classified 
o E: a database of handwritten words with given classifications 

 
 

o a computer is said to learn from an experience E if its performance P 
improves at tasks in T after the experience E 

 



• we can design learning systems - design choices, e.g.: 
 
 

 
 
 
 

• need to determine program’s target function 
o remember that a computer program is a function: input  output 
o e.g. ChooseMove: “chess board state”  “legal move” 
o e.g. Value: “chess board state”  “score of board state” 

higher scores mean more desirable state; so, consider all legal moves on 
current board to determine all possible successor board states, and then use 
Value to decide which successor board state is the best 

 
 



• need to determine how to represent the target function 
o e.g. maybe as a collection of rules? 

”IF 2 steps away from edge THEN score=40” 
 
 

o e.g. maybe a quadratic polynomial function of predefined board features 
”y=number of black pieces” 
”z=number of red pieces” 
”b is a board state” 
”w0 and w1 are weights / numerical coefficients” 
”f(b) = w0 + w1 y + w2 z” 

 
 
 
 
 
 



Quick maths revision 
 
• polynomial. expression with linear (+ and −) combination of terms (constants  × 

variables) where exponent is non-negative integer (x4 is okay, but x3/4 or x -2 not 
polynomial), e.g. these are polynomial expressions: 

o x5 + 3 
o x2 + 5x + 1 
o x3 + 3x0 
o f(x)=x3 + 2  …is a polynomial function 
o 0=x3 + 2  …is a polynomial equation 

• degree. take a term, sum the exponents of the variables in that term 
o x5 has degree 5 
o xy has degree 2 

• degree of a polynomial. is the highest degree of any of the terms – polynomials 
with degree 1 to 5 are given special names 

o linear.   has degree 1 
o quadratic.  has degree 2 
o cubic.  has degree 3 
o quartic. has degree 4 
o quintic. has degree 5 

 
• quadratic polynomial. has degree 2, e.g. 

o x2 
o 10x + 3 + x2 

• NB: in many cases, people say “quadratic” and mean that the highest allowable 
degree is 2 (not necessarily exactly 2), i.e. the degree might be less 

 
 

 
• recap., 

o Task: checkers 
o Experience: games played against self 
o Performance: games won in competition 
o target function is Value: “chess board state”  “score of board state” 

 V: B  real numbers 
o target function representation is polynomial equation 

 V´(b) = w0 + w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6 
 
• now decide on a learning algorithm 

o training examples:  <b, Vtrain(b)> 
o e.g. <(x1=3,x2=0,x3=1,x4=0,x5=0,x6=0),  +100> 

 
o want to find values for w0…w6 so our function gets a best fit for the 

training data 
o so what changes as we learn?  The values of the weights 

 



 
• error 

o difference between expected output (from training data) and actual output 
(from our learning computer program) 

 

 
 
 
 
 
• overall error 

o classical measure of error E:  sum of squared errors 
 

 
 
 
 
 
 
• learning 

o minimise the squared error iteratively for each training example 
o i.e. I’ll give you (the computer) a training example, and you modify 

weights w0…w6 to minimise: 

 
o …and I’ll give you another training example, and you modify your 

weights again,…, and we’ll keep doing this until we are satisfied 
 
 
 
 

o algorithm: Least Mean Squares 
 stochastic gradient-descent 
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Quick maths revision 
 
• gradient-descent. finds the local minimum of a function – does this by moving in 

direction negative of gradient at the current point 
o a is current point 
o b is next point 
o f ‘(a) is gradient of function at point a 
o η is the size of the step that we’ll take (must be +ve) 

 
b = a − η . f ‘(a) 

 
• f(x) = x2 

 
 

• f ’(x) = 2x …derivative of our function used to get the gradient at our point 
o f ‘(10) = 20 …formula says we move negative to gradient, so says move left 

   along graph, which seems sensible 
o a = 10 
o η = 0.1  …something small 
o b = 10 − 0.1 × 20 = 8  …8 < 10, so we are moving towards the minimum 

 
• can work for functions with arbitrary number of variables 

o f(x,…, z) 
 
• to do this, take partial derivatives of each variable in turn 

o partial derivative. differentiate function for one variable, and fix all other 
variables (treat as constants) 

o in terms of learning, this means we modify each weight in turn  
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• algorithm: Least Mean Squares 
o for each term i with weight wi and variable xi do the following: 

 

 
 
 
 
 

 
 
 
• NB: it turns out that the partial derivative of squared error is negative, and so it cancels 

out the negative sign in front of η 
 
• think about error  

o if the error is positive   
 our actual value V’(b) is too small, …that is: 
 weight wi is too small, so we’ll increase it 

 
 NB: gradient-descent states that moving in the direction of the negative 

gradient will decrease the function output…this is what we’re doing  
 
 

o if the error is negative  
 our actual value V’(b) is too big, …that is: 
 weight wi is too big, so we’ll decrease it 

 
 NB: gradient-descent states that moving in the direction of the negative 

gradient will decrease the function output…this is what we’re doing  
 
 

 
 

 

b a η 
(learning rate) 

negative rate-of-change of 
error with respect to 

weight i (i.e. -ve gradient) 


