
CS 367 Tutorial

20 October 2008

Week 12 (tutorial #10)

Carl Schultz

Prolog

declarations

(page 71 of prolog manual)

• lines that start with “:-“ are declarations

• used to tell prolog to treat certain predicates in a special way

:- multifile derived/1

• …means that if more clauses are loaded from other files for the predicate

“derived”, the new clauses will be added to the old ones (rather than replace them)

:- dynamic derived/1

• …means that other predicates might inspect, add or delete some of the “derived”

clauses

modifying the database

(page 152 of manual)

• dynamic predicates can be changed and inspected at runtime by other clauses

• assert and retract are used to add and remove clauses

:- dynamic need/1.

raining :- assert(need(umbrella)).

sunny :- retract(need(umbrella)).

| ?- need(X).

no

| ?- raining.

yes

| ?- need(X).

X = umbrella ? ;

no

| ?- sunny.

yes

| ?- need(X).

no

• functor is used to match a predicate to a name and arity

| ?- functor(foo(a,b), N, A).

N = foo,

A = 2

| ?- functor(X, foo, 2).

X = foo(_A,_B)

• you will need to use assert your operators and heuristic function so that they

can be inserted into the database at runtime

idaStar.pl

 f-bounded (f-limited) search is the main relation

fbsearch / 5

 (review IDA* powerpoint week 11)

1. check if node is a goal node

2. check if the F value (path cost + heuristic value) is less than or equal to the

bound � if yes, then add children nodes to the frontier (i.e. nodes to visit),

and visit one of these children (depth-first search with recursively call to

fbsearch/5)

3. check if F value is greater than bound � if yes, then record this F if it’s the

smallest F over the bound so far (i.e. keeping track of the minimum F over the

bound, preparing for the next change in bound)

4. F value of all nodes are over the bound � start again, but increase the bound

For this to work, you need to define:

Domain definitions:

• neighbors(State, Neighbors)

• cost(State, Neighbor, ArcCost)

Problem definition:

• isGoal(State)

Search definition:

• h(State, Goal, HeuristicValue)

progressionPlanning.pl

neighbors(State, Neighbors)

• returns children nodes (neighbours) of given node (State)

• collects neighbours using built in “setof” predicate (look this up in the

manual, also “^” and “bagof”)

1. get applicable operations (e.g. move) � do this by testing whether an

operations preconditions are satisfied by the currect state

2. apply the operation to get the new state (the neighbour) � this basically

means modifying the fluents (statics don’t change between states)

• remove fluents that operation has made false (e.g. it’s no longer true that

“at(warehouseman, pos(2,3))” so remove it)

• add fluents that operation has made true (e.g. “at(warehouseman,

pos(3,3))”)

note: stateFluents(State, StateFluents) is meta-level � it

basically checks each predicate in State to see if it’s a fluent, and if it is, it adds it

to StateFluents list

