Neural Networks

Computer Science 367
Patricia J Riddle

Some History of Neural Networks

- McCulloch and Pitts [1943]: Model of artificial neurons
- Hebb [1949]: Simple updating rule
- Minsky and Edmonds [1951]: First neural network computer
- Rosenblatt [1962]: Perceptrons (the model)
- Minsky and Papert [1969]: Perceptrons (the book)

Revival of Neural Networks

Recently, there has been a resurgence of interest in neural networks for the following reasons:

- Faster digital computers to simulate larger networks
- Interest in building massively parallel computers
- New neural network architectures
- Powerful Learning algorithms

Characteristics of Neural Networks

- A large number of very simple neuronlike processing elements
- A large number of weighted connections between the elements
- Highly parallel, distributed control
- An emphasis on learning internal representations automatically

The 100-Time-Steps Requirement

- Individual neurons are extremely slow devices (compared to digital computers), operating in the millisecond range.
- Yet, humans can perform extremely complex tasks in just a tenth of a second.
- This means, humans do in about a hundred steps what current computers cannot do in 10 million steps.
- Look for massively parallel algorithms that require no more than 100 time steps.

Failure Tolerance

- On the one hand, neurons are constantly dying, and their firing patterns are irregular
- On the other hand, components in digital computers must operate perfectly.
- With current technology, it is:
 - Easier to build a billion-component IC in which 95% of the components work correctly.
 - More difficult to build a million-component IC that functions perfectly.

Fuzziness

- People seem to be able to do better than computers in fuzzy situations.
- We have very large memories of visual, auditory, and problem-solving episodes.
- Key operation in solving new problems is finding closest matches to old situations.

Hopfield Networks

Theory of memory

 Hopfield introduced this type of neural network as a theory of memory.

Distributed representation

- A memory is stored as a pattern of activation across a set of processing elements.
- Furthermore, memories can be superimposed on one another; different memories are represented by different patterns over the same set of processing elements.

Hopfiled Networks (cont'd)

Distributed, asynchronous control

 Each processing element makes decisions based only on its own local situation. All the local actions add up to a global solution.

Content-addressable memory

 A number of patterns can be stored in a network. To retrieve a pattern, we need only specify a portion of it. The network automatically finds the closest match.

Fault tolerance

 If a few processing elements misbehave or fail completely, the network will still function properly.

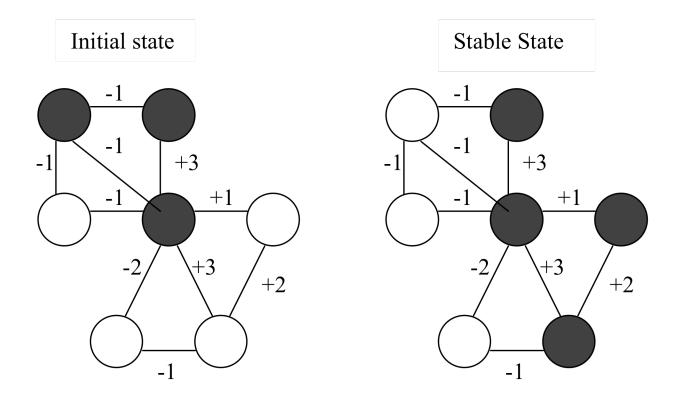
Technical Details of Hopfield Networks

- Processing elements (units) are either in state active (1) or passive (-1).
- Units are connected to each other with weighted, symmetric connections (recurrent network).
- A positively (negatively) weighted connection indicates that the two units tend to activate (deactivate) each other.

Parallel Relaxation in Hopfield Networks

- A random unit is chosen.
- If any of its neighbors are active, the unit computes the sum of the weights on the connections to those active neighbors.
- If the sum is positive, the unit becomes active; otherwise it becomes inactive.
- The process (parallel relaxation) is repeated until the network reaches a stable state.

Example of a Hopfield Network



Stability

- Given any set of weights and any initial state, parallel relaxation eventually steers the network into a stable state.
- It will only stabilize if parallel relaxation is used (asynchronous).
- If a synchronous update is done then it will either stabilize or oscillate between two (and only two) units.

Some Features of Hopfield Networks

- The network can be used as a content-addressable memory by setting the activities of the units to correspond to a partial pattern. To retrieve the pattern, we need only supply a portion of it.
- Parallel relaxation is nothing more than search, albeit of a different style. The stable states correspond to local minima in the search space.
- The network corrects errors: if the initial state contains inconsistencies, the network will settle into the solution that violates the fewest constraints offered by the inputs.

Perceptrons

- This type of network was invented by Rosenblatt [1962].
- A perceptron models a neuron by taking a weighted sum of its inputs and sending the output 1 if the sum is greater than or equal to some adjustable threshold value; otherwise it sends 0.
- The connections in a perceptron, unlike in a Hopfield network, are unidirectional (feedforward network).
- Learning in perceptrons means adjusting the weights and the threshold.
- A perceptron computes a binary function of its input.
 Perceptrons can be combined to compute more complex functions.

A Perceptron

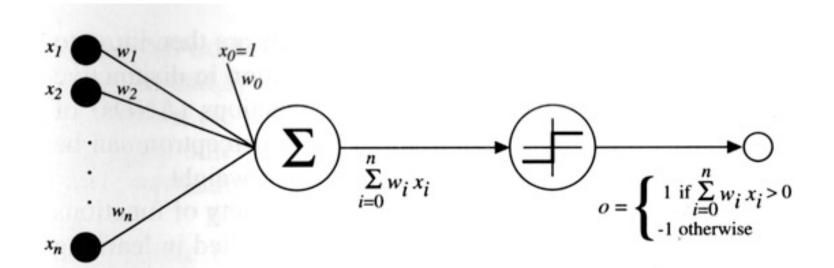


FIGURE 4.2 A perceptron.

Activation Function

• Input: $\vec{x} = (x_1, ..., x_n)$ $x_0 = 1$

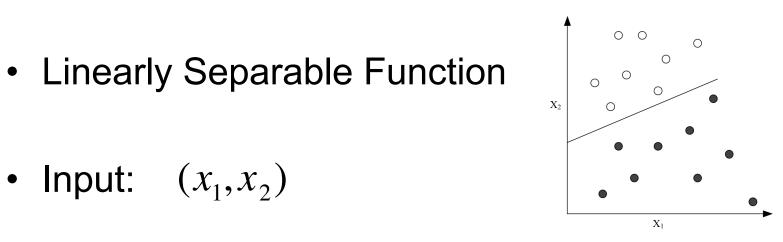
Output with explicit threshold:

$$g(\vec{x}) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} w_i x_i \ge t \\ 0 & \text{otherwise} \end{cases}$$

Output with implicit threshold:

$$g(\vec{x}) = \begin{cases} 1 & \text{if } \sum_{i=0}^{n} w_i x_i \ge 0\\ 0 & \text{otherwise} \end{cases}$$

What Perceptrons Can Represent

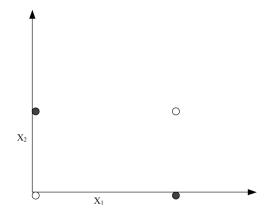


- Input: (x_1, x_2)
- Output: $g(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2$
- Decision Surface: $g(x_1, x_2) = 0 \Leftrightarrow x_2 = -\frac{w_1}{w_2} x_1 \frac{w_0}{w_2}$

Limitations of Perceptrons

 If a decision surface does not exist, the perceptron cannot learn the function.

An example is the XOR function:



Perceptron Learning Method

- Start with randomly assigned weights.
- For each example \vec{x} do:
 - Let o be the computed output $g(\vec{x})$
 - Let t be the expected (target) output.
 - Update the weights based on \vec{x} , o, and t.
- Repeat the process (i.e., go through another epoch) until all examples are correctly predicted or the stopping criterion is reached.

Updating Rule

• The error is the difference between the expected output and the computed output:

$$err = t - o$$

- If the error is positive (negative), o must be increased (decreased).
- Each input x_i contributes w_ix_i to the total input.
- If x_i is positive (negative), increasing w_i will increase (decrease) o.
- The desired effect can be achieved with the following rule (η is the learning rate):

$$w_i \leftarrow w_i + \eta \cdot x_i \cdot err$$

Multilayer Feed-Forward Networks

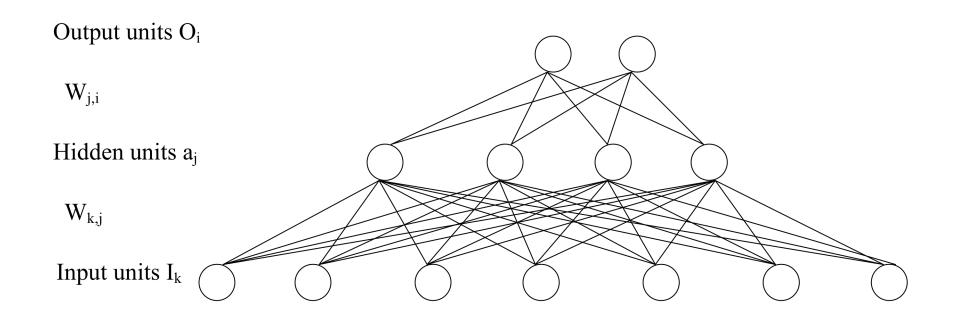
Input units are connected to hidden units.

Hidden units are connected to other hidden units.

•

Hidden units are connected to output units.

Example of a Three Layer Feed-Forward Network



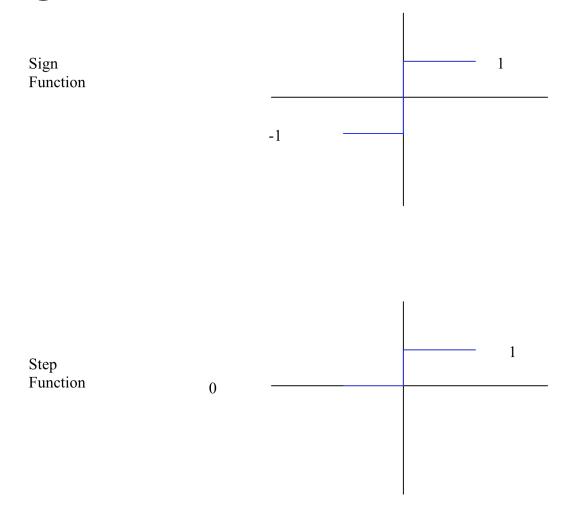
The Idea of Back-Propagation Learning

- Compute the output for a given input and compare it with the expected output.
- Assess the blame for an error and divide it among the contributing weights.
- Start with the second layer (hidden units to output units) and then continue with the first layer (input units to hidden units).
- Repeat this for all examples and for as many epochs as it takes for the network to converge.

Activation Function

- Backpropagation requires the derivative of the activation function g.
- The sign function (used in Hopfield networks) and the step function (used in Perceptrons) are not differentiable.
- Usually, backpropagation networks use the sigmoid function:

Sign And Step Functions



Backpropagation Update Rules (2nd Layer)

- Let Err_i be the error $(t_i o_i)$ at the output node.
- Let in_i be the weighted sum $\sum_j w_{j,i} a_j$ of inputs to unit i.
- Let Δ_i be the new error term $Err_i g'(in_i)$.
- Then the weights in the second layer are updated as follows:

$$\mathbf{w}_{j,i} \leftarrow \mathbf{w}_{j,i} + \mathbf{\eta} \cdot \mathbf{a}_j \cdot \mathbf{\Delta}_i$$

Backpropagation Update Rules (1st Layer)

• Let Δ_i be the new error term for the first layer:

$$\Delta_{j} = g'(in_{j}) \sum_{i} w_{j,i} \Delta_{i}$$

 Then the weights in the first layer are updated as follows:

$$w_{k,j} \leftarrow w_{k,j} + \eta \cdot i_k \cdot \Delta_j$$

Pros and Cons of Backpropagation

Cons

- Backpropagation might get stuck in a local minimum that does not solve the problem.
- Even for simple problems like the XOR problem, the speed of learning is slow.

Pros

- Fortunately, Backpropagation does not get stuck very often,
- Backpropagation is inherently a parallel, distributed algorithm.