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Decision Tree Learning
• Discrete valued target functions - Classification problems

• Represented as sets of if-then rules to improve human
readability

• Used in many success stories

• Classify instances by sorting them down the tree
– Each internal node is a test on some attribute
– Each branch is one possible value for that test
– Each leaf specifies classification value
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Decision tree
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Learned Rules
• Outlook=Sunny∧Humidity=High→PlayTennis=No

• Outlook=Sunny∧Humidity=Normal→PlayTennis=Yes

• Outlook=Overcast→PlayTennis=Yes

• Outlook=Rain∧Wind=Strong→PlayTennis=No

• Outlook=Rain∧Wind=Weak→PlayTennis=Yes
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When to use Decision Tree Learning

• Instances are represented by attribute value pairs (can be
real valued).

• The target value has discrete output values (no need to be
binary, some extensions even handle real valued targets).

• Disjunctive descriptions may be required

• The training data
– may contain errors - errors in classification and errors in attribute

values
– may contain missing attribute values
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Attribute Values

greennormalrainyInstance 5

redstrongcloudyInstance 4

greennormalsunnyInstance 3

rednormalsunnyInstance 2

redstrongrainyInstance 1

ClassWindOutlookattributes
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ID3 Algorithm
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What Attribute is the Best
Classifier?

• Entropy (from information theory)
– Measures the impurity of an arbitrary collection

of examples
• Entropy(S)≡-p⊕log2p⊕-plog2p

– for a boolean classification where p⊕ is the
proportion of positive examples in S and p is
the proportion of negative examples in S.

– In all calculations involving entropy we define
0log0 to be 0
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Entropy

• Entropy(9+,5-)=-(9/14)log2(9/14)-(5/14)log2(5/14)=.94
– If all members of S are in the same class Entropy(S)=0
– If there is an equal number of positive and negative

instances in S then Entropy(S)=1

• Entropy specifies the minimum number of bits of
information needed to encode the classification of
an arbitrary member of S
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Information Theory

• A fair coin has an entropy of one bit.
• However, if the coin is not fair, then the

uncertainty is lower (if asked to bet on the
next outcome, we would bet preferentially on
the most frequent result), and thus the
Shannon entropy is lower.

• A long string of repeating characters has an
entropy rate of 0, since every character is
predictable.
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Information Theory History

• During World War II, Claude Shannon developed
a model of the communication process using the
earlier work of Nyquist and Hartley. Published in
1947,

• The Mathematical Theory of Communication
became the founding document for much of the
future work in information theory.

• Given a number of desired properties for an
information measure, the Shannon and Hartley
measures of information and only these
measures [AFN74] have properties desirable in
an information measure.
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Information Theory History

• The importance of this work soon became apparent
to scholars in a range of disciplines.

• Shannon's work was intended to provide exactly what
the title indicated: a theory of communication, useful
in understanding telecommunications systems.

• Shannon thought that the fundamental problem of
communication is that of reproducing at one point
either exactly or approximately a message selected
at another point.
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The Gist of Information Theory

• The significant aspect is that the actual message is
one selected from a set of possible messages
[SW49].

• Using this engineering perspective, the
communication process may be understood as a
source communicating to a destination.

• The source provides its message to a transmitter
through a perfect connection.

• The transmitter communicates through a channel to
the receiver, which receives the message and gives it
in a lossless manner to the destination.
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Importance of Noise

• One of the key additions that Shannon made
to the earlier work of Nyquist and Hartley was
the formal integration of noise into the
communication model.

• Noise is introduced into the channel between
the transmitter and the receiver and acts to
changes messages so that what is received
differs from what is transmitted.
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Discrete or Non-discrete

• Sources may be discrete or non-discrete.

• A discrete source generates ``the message,
symbol by symbol.

• It will choose successive symbols according
to certain probabilities depending, in general,
on preceding choices as well as the particular
symbols in question" [SW49].
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Coding
• Coding takes place at the transmitter not at the source of the

message

• The coded form of the message is what leaves the transmitting
process and moves to the receiving process.

• It is represented in some form that can be transmitted by the
medium supporting the channel.

• Transmitting data inherently requires that a change of medium
take place

• When a signal moves from one medium to another, it must be
physically represented somewhat differently, making an encoder
necessary.
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Shannon’s Channel Model
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How to Code
• Given a source producing symbols at a rate consistent with a

set of probabilities governing their frequency of occurrence,
Shannon asks ``how much information is `produced' by such a
process, or better, at what rate information is produced?"

• For Shannon, the amount of self-information that is contained in
or associated with a message being transmitted, when the
probability of its transmission is p, is the logarithm of the inverse
of the probability, or I=log1/p  [Los90,TS95].

• The choice of a logarithmic base corresponds to the choice of a
unit for measuring information.

• If the base 2 is used the resulting units may be called binary
digits, or more briefly bits, a word suggested by J. W. Tukey.
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Deriving Entropy

• A device with two stable positions . . . can store one
bit of information.

• N such devices can store N bits, since the total
number of possible states is sN and log22N=N[SW49].

• The amount of information in the output of a process
is proportional to the number of different values that
the function might return.

• Given n different output values, the amount of
information (I) may be computed as I=log2n.
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Restaurant Example

• Ordering food at a restaurant might be modeled as a
channel based process.

• The thoughts concerning food preference might be
seen as the source, the vocalized order comes from
the transmitting mouth, the waiter's ear is the
receiver, and the chef is the destination.

• For example, use of this model may suggest that
noise effecting the channel might be examined.

• Using care in the choice of codes (names for food)
might help decrease the error rate in recording
customer orders.

• Also things ordered often should have shorter names
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Another example
• People have a tendency to talk, and presumably think, at the basic

level of categorization - to draw the boundary around "chairs", rather
than around the more specific category "recliner", or the more general
category "furniture".

• People are more likely to say "You can sit in that chair" than "You can
sit in that recliner" or "You can sit in that furniture".

• And it is no coincidence that the word for "chair" contains fewer
syllables than either "recliner" or "furniture".

• Basic-level categories, in general, tend to have short names; and
nouns with short names tend to refer to basic-level categories.

• Not a perfect rule, of course, but a definite tendency.
• Frequent use goes along with short words; short words go along with

frequent use.
• Or as Douglas Hofstadter put it, there's a reason why the English

language uses "the" to mean "the" and "antidisestablishmentarianism"
to mean "antidisestablishmentarianism" instead of
antidisestablishmentarianism other way around.
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What does this have to do with
ML

• Machine Learning is the same as compression

• Now you just have to transmit the tree and the
mistakes or errors

• A lot of compression algorithms are machine
learning algorithms and vice versa

• Information Theory is the basis of them both
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General Entropy Formula

• Generally,

– For example if there are 4 classes and the set is
split evenly, 2 bits will be needed to encode the
classification of an arbitrary member of S.

– If it is split less evenly an average message
length of less then 2 can be used.

! 

Entropy(S) " #pi log2 pi
i=1

c

$
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Entropy Function
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Information Gain

– Where Values(A) is the set of possible values for the
attribute A and Sv is the subset of S for which attribute
A has value v.

• Information Gain is the expected reduction in
entropy caused by knowing the value of attribute
A.

! 

Gain(S,A) " Entropy(S) #
| Sv |

| S |v$Values(A )
% Entropy(Sv )
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Information Gain Intuition

• Information Gain is the information
provided about the target function value,
given the value of some other attribute A.

• The value of Gain(S,A) is the number of
bits saved when encoding the target value of
an arbitrary member S, by knowing the
value of A.
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Information Gain Example

• Of our 14 examples suppose 6 positive and
2 negative have Wind=Weak.

• Values(Wind)=Weak,Strong

S=[9+,5-]
Sweak←[6+,2-]
Sstrong←[3+,3-]
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Information Gain Example II

The information gain by sorting the 14 examples by
Wind is:

=0.940-(8/14)0.811-(6/14)1.00
=0.048

! 

Gain(S,Wind) = Entropy(S) "
| Sv |

| S |v#{weak,strong}
$ Entropy(Sv )

! 

Entropy(S) " (8 /14)Entropy(SWeak ) " (6 /14)Entropy(SStrong )
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Example Continued
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In more Detail - Humidity

• S: [9+,5-]
• E=-(9/14)log2(9/14)-(5/14)log2(5/14) = 0.940

• S[3+,4-]
• E=-(3/7)log2(3/7)-(4/7)log2(4/7) = 0.985

• S[6+,1-]
• E=-(6/7)log2(6/7)-(1/7)log2(1/7) = 0.592

• GR=0.940-(7/14) x 0.985 - (7/14) x 0.592 = .151

! 

Entropy(S) " #pi log2 pi
i=1

c

$

! 

Gain(S,Wind) = Entropy(S) "
| Sv |

| S |v#{weak,strong}
$ Entropy(Sv )
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One More Time - Wind

• S: [9+,5-]
• E=-(9/14)log2(9/14)-(5/14)log2(5/14) = 0.940

• S[6+,2-]
• E=-(6/8)log2(6/8)-(2/8)log2(2/8) = 0.811

• S[3+,3-]
• E=-(3/6)log2(3/6)-(3/6)log2(3/6) = 1.00

• GR=0.940-(8/14) x 0.811 - (6/14) x 1.00 = .048

! 

Entropy(S) " #pi log2 pi
i=1

c

$

! 

Gain(S,Wind) = Entropy(S) "
| Sv |

| S |v#{weak,strong}
$ Entropy(Sv )
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Decision Tree Example

• ID3 uses Information Gain to select the best
attribute at each step in growing the tree.

• Gain(S,Outlook)=0.246
• Gain(S,Humidity)=0.151
• Gain(S,Wind)=0.048
• Gain(S,Temperature)=0.029
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Partially Grown Tree
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Final Tree
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Searching in Decision Trees

• ID3 can be seen as searching the space of
possible decision trees:
– Simple to complex hill-climbing search
– Complete hypothesis space of finite discrete-

valued functions
– ID3 maintains only a single current hypothesis
– Greedy Search
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Searching II
• Can’t tell how many alternative decision trees are

consistent with the available training data

• Can’t pose queries for new instances that optimally resolve
the competing hypothesis

• Pure ID3 performs no backtracking - can converge to local
optimum - greedy search

• ID3 not incremental - less sensitive to errors in individual
training instances - easily extended to handle noisy data
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ID3 Hypothesis Space
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Inductive Bias in Decision Tree Learning

• Much harder to define because of heuristic
search
– Shorter trees are preferred over long ones.
– Trees that place high information gain

attributes close to the root are preferred over
those that do not.
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Restriction Biases and Preference Biases

• ID3 incompletely searches a complete hypothesis space
from simple to complex hypothesis.  Its bias is solely a
consequence of the ordering of hypothesis searched.  Its
hypothesis space introduces no additional bias - preference
or search bias.

• Candidate-Elimination completely searches an incomplete
hypothesis space.  Its bias is solely a consequence of the
expressive power of its hypothesis representation.  Its
search strategy introduces no additional bias - restriction
or language bias.
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What is the Best Bias?

• A preference bias is more desirable

• First learner
– restriction bias (linear function),
– preference bias (LMS algorithm for parameter

tuning)
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Occam’s razor

• Prefer the simplest hypothesis that fits the data.
• Why?

• Fewer short hypothesis then long ones - it is less
likely that one will find a short hypothesis that
coincidently fits the training data

• This is really rubbish!!!!
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Occam’s razor is Cut
• Prefer decision trees containing exactly 17 leaf nodes with

11 nonleaf nodes, that use the decision attribute A1 at the
root and test attributes A2 through A11, in numerical
order.

• There are relatively few such trees and we might argue (by
the same reasoning above) that our a priori chance of
finding one consistent with an arbitrary set of data is
therefore small.

• Another problem - based on internal learner’s
representation
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Different Representations

lownormalhighrainy
tempwindhumidityoutlook

Normal-lowRainy-high

Wind & tempOutlook &
humidity
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Avoiding Overfitting

• Noise (errors) in the data,
• Number of training instances too small

• Given a hypothesis space H, a hypothesis h∈H is
said to overfit the training data if there exists some
alternative hypothesis h´∈H, such that h has a
smaller error than h´ over the training examples,
but h´ has a smaller error than h over the entire
distribution of instances.

• Pretty useless definition - not causal
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Overfitting in Decision Trees
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Approaches to Overfitting

• Stop growing tree earlier
• Post-prune the tree
• Separate set of examples -

– training and validation set approach - even if the
training set is mislead by random errors the validation
set is unlikely to exhibit the same random fluctuations -
2/3 training, 1/3 validation

• Statistical test
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Reduced Error Pruning

• Consider each node for pruning

• Pruning = removing the subtree at that node, make
it a leaf and assign the most common class at that
node

• A node is removed if the resulting tree performs
no worse then the original on the validation set -
removes coincidences and errors
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Reduced Error Pruning II

• Nodes are removed iteratively choosing the node
whose removal most increases the decision tree
accuracy on the graph.

• Pruning continues until further pruning is harmful.

• Uses training, validation & test sets
– effective approach if a large amount of data is available
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Impact of Reduced Error Pruning
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Rule Post Pruning

1. Infer decision tree from training set

2. Convert tree to rules - one rule per branch

3. Prune each rule by removing preconditions that
result in improved estimated accuracy

4. Sort the pruned rules by their estimated accuracy
and consider them in this sequence when
classifying unseen instances
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Improved Estimated Accuracy
1. Calculate the rule accuracy over training data

2. Calculate the standard deviation assuming a binomial distribution

3. For a given confidence interval, lower bound estimate is taken as
measure of rule performance

• For large data sets the estimated accuracy is very
close to the observed whereas it grows further away
as the data set size decreases

• Not statistically valid, but found useful in practice
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Why Convert to Rules?

• Allows distinguishing among different
contexts in which a node might be used

• Removes distinction between attribute tests
near the root versus leafs
– no messy bookkeeping

• Easier for people to understand
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Tree With Redundancies
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Continuous Valued Attributes?

• Dynamically creating new discrete valued
attributes Ac that is true if A < c

1. Sort examples according to the continuous attribute
value

2. Identify adjacent examples that differ in their target
classifications

3. Generate candidate threshold midway between these
points

4. Calculate the information gain of each candidate and
pick best

5. Dynamically created boolean attributes to compete
with others to appear in tree
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Continuous Valued Attributes II

• The value of c that maximizes information
gain must be one of these points

• Many other approaches
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Example

• (48+60)/2 = 54
• (80+90)/2 = 85
• Temperature>54, Temperature>85

NoYesYesYesNoNoPlayTennis
908072604840Temperature
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Other Measures for Picking
Attributes

• Information Gain has natural bias towards
attributes with many values over ones with
few
– For instance Date attribute has highest

information gain

• Use Gain Ratio
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Gain Ratio

• Entropy of S with respect to the values of A

! 

SplitInfo(S,A) " #
| Si |

| S |
i=1

c

$ log2
| Si |

| S |
! 

GainRatio(S,A) "
Gain(S,A)

SplitInfo(S,A)
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Gain Ratio Intuition

• If attribute A splits the examples each into
separate unique values (Date), SplitInfo = log2n

• If attribute B splits the examples in half,
SpiltInfo=1

• Then if attributes A and B have the same Gain
then B will clearly score higher
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Problems with Gain Ratio

• If |Si| ≈|S|, then GainRatio is undefined or
very large

• To avoid selecting attributes on this basis
1. Calculate Gain of each attribute
2. Calculate GainRatio only on attributes with

above average Gain
3. Choose best GainRatio
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Other Evaluation Functions

• Many other evaluation functions

• Distance metric Lopez de Mantaras, 1991
– Distance between our partition and the perfect

partition
– Not biased by number of values for an attribute
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Missing Attribute Values in
Training Examples

• Blood-Test_Result
1. Standard methodology from Statistics is to throw

away data
2. Assign missing value to the most common value at

node n
3. Alternatively, assign missing value to the most

common value at node n for examples with the same
target value

4. Assign probability to each possible value, estimated
by frequencies at node n
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Missing Attribute II

• Latter tack, can be subdivided again later in
the tree

• Same approach can be used to classify
examples
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Attributes with Differing Costs

• Temperature, BiopsyResult, Pulse,
BloodTestResults

• Prefer decision trees that use low-cost attributes
where possible
– Divide Gain by the cost of the attribute
– Do not guarantee optimal cost-senstive decision tree,

but bias the search in favor of low cost attributes
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Differing Costs II

• Robot domain -

• Medical Domain

– Where w∈{0,1} is a constant that determines
the relative important of cost versus
information gain

! 

Gain
2
(S,A)

Cost(A)

! 

2
Gain(S,A )

"1

(Cost(A) +1)
w
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Summary
• Decision Trees are practical for discrete-valued functions,

grows tree from root down, selecting next best attribute at
each new node added to tree.

• ID3 searches complete hypothesis space.  It can represent
any discrete-valued function defined over discrete values
instances, therefore it avoids the problem of the target
function not being in the hypothesis space.

• Inductive Bias implicit in ID3 is preference for smaller
trees, only grows as large as needed to classify training
examples.
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Summary continued

• Overfitting data is an important issue. Therefore
methods for post-pruning are important.

• Very large variety of extensions: post-pruning,
handling real-valued attributes, accommodating
missing attribute values, incrementally refining
decision trees, other attribute selection measures,
considering costs associated with instance
attributes (or target values).


