
Solving problems by searching

Chapter 3



29 Sept 2008 CS 367 - Blind Search 2

Outline

 Problem-solving agents
 Problem types
 Problem formulation
 Example problems
 Basic search algorithms



29 Sept 2008 CS 367 - Blind Search 3

Problem-solving agents



29 Sept 2008 CS 367 - Blind Search 4

Example: Romania

 On holiday in Romania; currently in Arad.
 Flight leaves tomorrow from Bucharest
 Formulate goal:

 be in Bucharest

 Formulate problem:
 states: various cities
 actions: drive between cities

 Find solution:
 sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest



29 Sept 2008 CS 367 - Blind Search 5

Example: Romania



29 Sept 2008 CS 367 - Blind Search 6

Outline

 Problem-solving agents
 Problem types
 Problem formulation
 Example problems
 Basic search algorithms



29 Sept 2008 CS 367 - Blind Search 7

Problem types

 Deterministic, fully observable  single-state problem
 Agent knows exactly which state it will be in; solution is a sequence

 Non-observable  sensorless problem (conformant
problem)
 Agent may have no idea where it is; solution is a sequence

 Nondeterministic and/or partially observable  contingency
problem
 percepts provide new information about current state
 often interleave search, execution

 Unknown state space  exploration problem



29 Sept 2008 CS 367 - Blind Search 8

Example: vacuum world

 Single-state, start in #5.
Solution?



29 Sept 2008 CS 367 - Blind Search 9

Example: vacuum world

 Single-state, start in #5.
Solution? [Right, Suck]

 Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?



29 Sept 2008 CS 367 - Blind Search 10

Example: vacuum world

 Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

 Contingency
 Nondeterministic: Suck may

dirty a clean carpet
 Partially observable: location, dirt at current location.
 Percept: [L, Clean], i.e., start in #5 or #7

Solution?



29 Sept 2008 CS 367 - Blind Search 11

Example: vacuum world

 Sensorless, start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?

[Right,Suck,Left,Suck]

 Contingency
 Nondeterministic: Suck may

dirty a clean carpet
 Partially observable: location, dirt at current location.
 Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]



29 Sept 2008 CS 367 - Blind Search 12

Outline

 Problem-solving agents
 Problem types
 Problem formulation
 Example problems
 Basic search algorithms



29 Sept 2008 CS 367 - Blind Search 13

Single-state problem formulation

A problem is defined by four items:

1. initial state e.g., "at Arad"
2. actions or successor function S(x) = set of action–state pairs

 e.g., S(Arad) = {<Arad  Zerind, Zerind>, … }
3. goal test, can be

 explicit, e.g., x = "at Bucharest"
 implicit, e.g., Checkmate(x)

4. path cost (additive)
 e.g., sum of distances, number of actions executed, etc.
 c(x,a,y) is the step cost, assumed to be ≥ 0

 A solution is a sequence of actions leading from the initial state to a
goal state



29 Sept 2008 CS 367 - Blind Search 14

Selecting a state space

 Real world is absurdly complex
 state space must be abstracted for problem solving

 (Abstract) state = set of real states
 (Abstract) action = complex combination of real actions

 e.g., "Arad  Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

 For guaranteed realizability, all real states "in Arad“ must
get to some real state "in Zerind"

 (Abstract) solution =
 set of real paths that are solutions in the real world

 Each abstract action should be "easier" than the original
problem



29 Sept 2008 CS 367 - Blind Search 15

Outline

 Problem-solving agents
 Problem types
 Problem formulation
 Example problems
 Basic search algorithms



29 Sept 2008 CS 367 - Blind Search 16

Vacuum world state space graph

 states?
 actions?
 goal test?
 path cost?



29 Sept 2008 CS 367 - Blind Search 17

Vacuum world state space graph

 states? integer dirt and robot location
 actions? Left, Right, Suck
 goal test? no dirt at all locations
 path cost? 1 per action



29 Sept 2008 CS 367 - Blind Search 18

Example: The 8-puzzle

 states?
 actions?
 goal test?
 path cost?



29 Sept 2008 CS 367 - Blind Search 19

Example: The 8-puzzle

 states? locations of tiles
 actions? move blank left, right, up, down
 goal test? = goal state (given)
 path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]



29 Sept 2008 CS 367 - Blind Search 20

Example: robotic assembly

 states?: real-valued coordinates of robot joint
angles parts of the object to be assembled

 actions?: continuous motions of robot joints
 goal test?: complete assembly
 path cost?: time to execute



29 Sept 2008 CS 367 - Blind Search 21

Computers & Common Sense:
Cyc



29 Sept 2008 CS 367 - Blind Search 22

Outline

 Problem-solving agents
 Problem types
 Problem formulation
 Example problems
 Basic search algorithms



29 Sept 2008 CS 367 - Blind Search 23

Tree search algorithms

 Basic idea:
 offline, simulated exploration of state space by

generating successors of already-explored states
(a.k.a.~expanding states)



29 Sept 2008 CS 367 - Blind Search 24

Tree search example



29 Sept 2008 CS 367 - Blind Search 25

Tree search example



29 Sept 2008 CS 367 - Blind Search 26

Tree search example



29 Sept 2008 CS 367 - Blind Search 27

Implementation: general tree search



29 Sept 2008 CS 367 - Blind Search 28

Implementation: states vs. nodes

 A state is a (representation of) a physical configuration
 A node is a data structure constituting part of a search tree

includes state, parent node, action, path cost g(x), depth

 The Expand function creates new nodes, filling in the
various fields and using the SuccessorFn of the problem
to create the corresponding states.



29 Sept 2008 CS 367 - Blind Search 29

Search strategies

 A search strategy is defined by picking the order of node
expansion

 Strategies are evaluated along the following dimensions:
 completeness: does it always find a solution if one exists?
 time complexity: number of nodes generated
 space complexity: maximum number of nodes in memory
 optimality: does it always find a least-cost solution?

 Time and space complexity are measured in terms of
 b: maximum branching factor of the search tree
 d: depth of the least-cost solution
 m: maximum depth of the state space (may be ∞)



29 Sept 2008 CS 367 - Blind Search 30

Uninformed search strategies

 Uninformed search strategies use only the
information available in the problem
definition

 Breadth-first search
 Uniform-cost search
 Depth-first search
 Depth-limited search
 Iterative deepening search



29 Sept 2008 CS 367 - Blind Search 31

Breadth-first search

 Expand shallowest unexpanded node
 Implementation:

 fringe is a FIFO queue, i.e., new successors go
at end



29 Sept 2008 CS 367 - Blind Search 32

Breadth-first search

 Expand shallowest unexpanded node
 Implementation:

 fringe is a FIFO queue, i.e., new successors go
at end



29 Sept 2008 CS 367 - Blind Search 33

Breadth-first search

 Expand shallowest unexpanded node
 Implementation:

 fringe is a FIFO queue, i.e., new successors go
at end



29 Sept 2008 CS 367 - Blind Search 34

Breadth-first search

 Expand shallowest unexpanded node
 Implementation:

 fringe is a FIFO queue, i.e., new successors go
at end



29 Sept 2008 CS 367 - Blind Search 35

Properties of breadth-first search

 Complete? Yes (if b is finite)
 Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)
 Space? O(bd+1) (keeps every node in memory)
 Optimal? Yes (if cost = 1 per step)

 Space is the bigger problem (more than time)



29 Sept 2008 CS 367 - Blind Search 36

Uniform-cost search

 Expand least-cost unexpanded node
 Implementation:

 fringe = queue ordered by path cost

 Equivalent to breadth-first if step costs all equal
 g is the optimum cost from init state to current state
 Complete? Yes, if step cost ≥ ε
 Time? # of nodes with g ≤ cost of optimal solution,

O(bceiling(C*/ ε)) where C* is the cost of the optimal solution
 Space? # of nodes with g ≤ cost of optimal solution,

O(bceiling(C*/ ε))
 Optimal? Yes – nodes expanded in increasing order of g(n)



29 Sept 2008 CS 367 - Blind Search 37

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front



29 Sept 2008 CS 367 - Blind Search 38

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front



29 Sept 2008 CS 367 - Blind Search 39

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front



29 Sept 2008 CS 367 - Blind Search 40

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front



29 Sept 2008 CS 367 - Blind Search 41

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front



29 Sept 2008 CS 367 - Blind Search 42

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front



29 Sept 2008 CS 367 - Blind Search 43

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front



29 Sept 2008 CS 367 - Blind Search 44

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front



29 Sept 2008 CS 367 - Blind Search 45

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front



29 Sept 2008 CS 367 - Blind Search 46

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front



29 Sept 2008 CS 367 - Blind Search 47

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front



29 Sept 2008 CS 367 - Blind Search 48

Depth-first search

 Expand deepest unexpanded node
 Implementation:

 fringe = LIFO queue, i.e., put successors at front



29 Sept 2008 CS 367 - Blind Search 49

Properties of depth-first search

 Complete? No: fails in infinite-depth spaces, spaces
with loops
 Modify to avoid repeated states along path

 complete in finite spaces

 Time? O(bm): terrible if m (length of longest path
in search space) is much larger than d
  but if solutions are dense, may be much faster than

breadth-first

 Space? O(bm), i.e., linear space!
 Optimal? No



29 Sept 2008 CS 367 - Blind Search 50

Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

 Recursive implementation:



29 Sept 2008 CS 367 - Blind Search 51

Iterative deepening search



29 Sept 2008 CS 367 - Blind Search 52

Iterative deepening search l =0



29 Sept 2008 CS 367 - Blind Search 53

Iterative deepening search l =1



29 Sept 2008 CS 367 - Blind Search 54

Iterative deepening search l =2



29 Sept 2008 CS 367 - Blind Search 55

Iterative deepening search l =3



29 Sept 2008 CS 367 - Blind Search 56

Iterative deepening search

 Number of nodes generated in a depth-limited search to
depth d with branching factor b:

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

 Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

 For b = 10, d = 5,
 NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
 NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

 Overhead = (123,456 - 111,111)/111,111 = 11%



29 Sept 2008 CS 367 - Blind Search 57

Properties of iterative
deepening search

 Complete? Yes
 Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd =

O(bd)
 Space? O(bd)
 Optimal? Yes, if step cost = 1



29 Sept 2008 CS 367 - Blind Search 58

Summary of algorithms



29 Sept 2008 CS 367 - Blind Search 59

Repeated states

 Failure to detect repeated states can turn a
linear problem into an exponential one!



29 Sept 2008 CS 367 - Blind Search 60

Graph search



29 Sept 2008 CS 367 - Blind Search 61

Summary

 Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

 Variety of uninformed search strategies

 Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms


